ORAL PRESENTATION

Open Access

Therapeutic disruption of *Plasmodium vivax* infected red cell deformability

Rou Zhang¹, Wenn-Chyau Lee², Benoit Malleret^{1,3}, Rossarin Suwanarusk³, Ming Dao⁶, Cindy Chu^{4,5}, Chwee Teck Lim⁷, Laurent Renia³, Francois Nosten^{4,5}, Bruce Russell^{1*}

From Challanges in malaria research: Core science and innovation Oxford, UK. 22-24 September 2014

Background

Chloroquine (CQ) and artesunate (AS) are widely used as blood schizontocides in *P. vivax* treatment. Recent clinical observations show late stage parasites are cleared more rapidly than expected post treatment. As the high deformability of *P. vivax* facilitates its escaping from the splenic clearance, we hypothesize that CQ and AS directly affect the *P. vivax* infected red blood cells (iRBCs) rigidity. As a consequence, parasites are rapidly cleared from the blood circulation.

Materials and methods

P. vivax isolates from Thailand were pulse incubated with AS, CQ and a spiroindolone (NITD609). Morphological changes and rosetting frequency were assessed by sub vital staining. The micropipette aspiration technique was the used to quantify the cell membrane shear modulus. Microfluidics were used to study the *in vitro* iRBCs behaviour after drug treatment.

Results

While CQ and AS did not directly affect iRBC shear modulus, it significantly enhanced rosetting frequency and consequently the rigidity of rosetted iRBCs (the attachment of a single red cell results in a significant increase in shear modulus of the iRBC). NITD609 directly affected the iRBC rigidity. A microfluidic model of the spleen shows that *P. vivax* iRBCs with a higher rigidity are removed from flow. This study also show that normocytes that rosette with *P. vivax* iRBCs; form strong attachments (~500pN) that withstand a range of physiological shear stresses.

¹Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

Full list of author information is available at the end of the article

Conclusions

In addition to providing new and important baseline biomechanical data on *P. vivax* rosettes; this *ex vivo* study also provides a possible explanation for the clinically observed disappearance of *P. vivax* parasites soon after treatment.

Authors' details

¹Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. ²Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. ³Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore. ⁴Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK. ⁵Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sod, Thailand. ⁶Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. ⁷Department of Biomedical Engineering Faculty of Engineering, National University of Singapore, Singapore.

Published: 22 September 2014

doi:10.1186/1475-2875-13-S1-O25 Cite this article as: Zhang *et al.*: Therapeutic disruption of *Plasmodium vivax* infected red cell deformability. *Malaria Journal* 2014 13(Suppl 1):O25.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) Bio Med Central

Submit your manuscript at www.biomedcentral.com/submit

© 2014 Zhang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.