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Abstract

Background: Chloroquine accumulates in the acidic digestive vacuole of the intraerythrocytic
malaria parasite, and prevents the detoxication of haematin released during haemoglobin digestion.
Changes in protein PfCRT in the digestive vacuole membrane of growing intra-erythrocytic stages
of Plasmodium falciparum are crucial for resistance. Expressed in yeast, PCRT resembles an anion
channel. Depressed anion channel function could increase intralysosomal pH to reduce entry of
basic drug, or enhanced function could reduce drug interaction with target haematin. The most
important resistance-associated change is from positively-charged lysine-76 to neutral threonine
which could facilitate drug efflux through a putative channel. It has been proposed that the
resistance-reversing effect of verapamil is due to hydrophobic binding to the mutated PfCRT
protein, and replacement of the lost positive charge, which repels the access of 4-aminoquinoline
cations, thus partially restoring sensitivity. Desethylamodiaquine, the active metabolite of
amodiaquine, which has significant activity in chloroquine-resistance, may also act similarly on its
own.

Methods: Changes in physicochemical parameters in different CQ-resistant PFCRT sequences are
analysed, and correlations with drug activity on lines transfected with different alleles of the pfert
gene are examined.

Results and conclusions: The results support the idea that PfCRT is a channel which, in resistant
parasites, can allow efflux of chloroquine from the digestive vacuole. Activity of the chloroquine/
verapamil combination and of desethylamodiaquine both correlate with the mean hydrophobicity
of PfCRT residues 72-76. This may partly explain clinical-resistance to amodiaquine found in the
first chloroquine-resistant malaria cases from South America and enables tentative prediction of
amodiaquine's clinical activity against novel haplotypes of PfCRT.

Background chloroquine (CQ) arrived in Africa in the late 70s [1]. This
Every year there are 270 million clinical attacks of malaria  has led to an increase in malaria-associated deaths of chil-
and 2 million deaths, caused by the protozoan Plasmo-  dren [2]. CQ and other blood schizontocides target hae-

dium falciparum. Strains resistant to the 4-aminoquinoline ~ moglobin digestion within the digestive vacuole or
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lysosome in the growing erythrocytic stages of the para-
site. As weak bases they accumulate in the proton-rich vac-
uole [3], bind to haematin, and prevent its detoxication
[4] to insoluble dimeric haemozoin [5]. Accumulation of
haematin leads to the death of the parasite. The resistance
process is not yet understood, but is believed to follow
changes in lysosomal integral membrane proteins [6,7].
The most important changes in CQ-resistance are non-
silent mutations in gene pfcrt coding for PfCRT, the so-
called CQ-resistance transporter [8], the most important
changes in which are K76T and A220S. PfCRT, its ortho-
logues (CG-10) in other Plasmodium spp., and a homo-
logue, SSA662, from slime-mould Dictyostelium
discoideum, represent a protein class of unknown function,
with no easily interpreted relationship to other proteins
[9]. A preliminary analysis of the sequence of PfCRT by
the present author [unpublished: Plasmodium falciparum
chloroquine-resistance transporter: one of the usual chan-
nels? (Poster). COST B9 Meeting on Antiprotozoal Chem-
otherapy. London, June 23, 2002. Poster Abstract 49.]
indicated a similarity to chloride channels (CIC) in pro-
and eukaryotes [10]. Experimental data indicating that
PfCRT expressed in yeast has some chloride-channel fea-
tures have recently been reported [11]. This could have a
major impact on how we interpret the role of PfCRT in
resistance. A CIC function, possibly gated by membrane
potential, could, by varying the entrance or exit of charge-
balancing chloride anion, control intralysosomal pH,
thereby regulating access of basic drug to the lysosome
[3], or influencing the interaction of drug with its target
haematin [12]. Apart from these rather non-specific pH
effects, which are rendered unlikely by different interac-
tions of the physico-chemically very similar diastereomers
quinine and quinidine with mutated PfCRT [13], there is
persuasive evidence that resistance depends on a drug
efflux process [14]. Contradictory evidence [15] may now
be explained by postulating drug efflux from an internal
compartment such as the lysosome into the cytoplasm,
which after a variable delay, depending on experimental
conditions, releases drug back into the culture medium.

The present study analyses changes in residue hydropho-
bicity, side-chain volume and charge in different CQ-
resistant PfCRT sequences. In addition, the correlation of
reported in vitro drug activity with residue hydrophobic-
ity, side-chain volume and charge in a sensitive clone
transfected with alleles of the pfcrt gene from CQ-sensitive
and -resistant isolates [16] is examined. The results
obtained support the idea that PfCRT could be a channel
which, when mutated, allows efflux of chloroquine from
the lysosome. The activity of the resistance-reversing CQ-
verapamil (VE) combination on clones bearing different
pfert alleles is correlated with that of the amodiaquine
(AQ) metabolite desethylamodiaquine (DAQ) [17]
which has significant activity in chloroquine-resistance
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[18]. Evidence is brought forward that VE and DAQ bind
hydrophobically, in CQ-resistant parasites, to mutated
PfCRT in the residue 72-76 region. Either of these drugs
could replace the lost positive charge of lysine 76, imped-
ing the access of further 4-aminoquinoline cations to
PfCRT and partially restoring CQ-sensitivity. This idea
would explain both the limited VE effect seen in some
CQ-resistant New World isolates of P. falciparum [19]
which have less hydrophobic PfCRT 72-76 sequences and
their clinical cross-resistance to AQ in the first case-reports
[20,21] of CQ-resistant falciparum malaria from South
America. These data allow tentative prediction of the
response of novel PfCRT haplotypes to DAQ.

Materials and Methods

Computational and analytical methods

In the analysis of mutation-related changes in PfCRT
sequences, Eisenberg's hydropathy value[22] ("EIS"), the
side-chain volume (SCV) and the side-chain charge (CH)
of each residue were obtained. (Table 1). The side-chain
volume was obtained from the HyperChem 7 programme
(Hypercube Inc. Gainesville Florida, USA), on any indi-
vidual amino acid (except proline, owing to its unusual
composition) after replacement of the o-carbon, its
hydrogen, carboxyl and amino group, by H, so that the
side-chain volume of glycine, for example, would be
85.18 A3(H,), and the side-chain volume of alanine
would be 156.6 A3(CH,). Formal charge at pH 7.0 (a pos-
itive or negative integer or zero) associated with gain or
loss of a proton by nitrogen or oxygen (if present) in the
amino acid side-chain was also used.

Of ten variant residues in the PfCRT sequence (see Table
5) four had alternative mutants, and 15 different changes
were considered. The mean and standard errors of the val-
ues of physicochemical characteristics were determined.

For the correlation of reported in vitro drug activity with
hydrophobicity, side-chain volume and charge of PfCRT
residues in a CQ-sensitive clone whose pfcrt gene had
been replaced by alleles from isolates of different CQ-sen-
sitivities, the data of Sidhu et al. [16] were used (See Table
2 for an example of the calculation of mean values of
physicochemical parameters and Table 3 for tabulation of
data used).

Statistics

The statistical analysis was carried initially in Microsoft
Excel and significance levels were determined in a Docu-
menta Geigy Table [29]. The results were confirmed in
SPSS 11.01 using Pearson's bivariate correlation method.
Each IC50 value reported by Sidhu et al.[16] is the mean
of at least 3 test results, and these means were used
unmodified, giving only two degrees of freedom (DF)
where values for the four CQ-resistant clones and three or
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Table I: Abbreviations, Eisenberg hydropathy (EIS) value, side-chain volume (SCV), side-chain pK, and formal charge on the side-chain
for amino acids.

Amino-acid EIS hydropathy (log scale) side-chain volume A3 side-chain pK, formal side-chain charge (pH 7.0)
Aala 0.25 156.55 0
Ccys 0.04 219.43 833 0
D asp -0.72 232.12 3.86 -1
E glu -0.62 284.70 4.25 -1
F phe 0.6l 382.16 0
Ggly 0.16 85.18 0
H his -0.40 334.84 6.0 +1
lile 0.73 31343 0
Klys -1.10 366.25 10.28 +1
L leu 0.53 31553 0
M met 0.26 327.41 0
N asn -0.64 256.12 0
P pro -0.07 ND 0
Qgln -0.69 308.35 0
R arg -1.80 421.32 12.48 +1
S ser -0.26 183.07 0
T thr -0.18 238.55 0
V val 0.54 267.78 0
W trp 0.37 462.28 0
Y tyr 0.02 407.07 10.07 0

Table 2: Determination of physicochemical characteristics of mutable residues, and their mean values for protein PfCRT in a
transfected clone of P. falciparum.

PFCRT : clone GCO03

EIS SCv CH

residue amino acid
72 C 0.04 219.43 0
73 M 0.26 32741 0
75 N -0.64 256.12 0
76 K -1.1 366.25 |
SUM -1.44 1169.21 |
MEAN -0.275 292.303 0.25
72 C 0.04 219.43 0
74 M 0.26 32741 0
75 N -0.64 256.12 0
76 K -1.1 366.25 |
97 H -0.4 334.84 |
220 A 0.25 156.55 0
271 Q -0.69 308.35 0
326 N -0.64 256.12 0
356 | 0.73 313.43 0
371 R -1.8 421.32 |
SUM -3.99 2959.82 3
MEAN -0.399 295.982 0.3

(example given is CQ-sensitive clone GCO03).
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Table 3: Mean physicochemical parameters and drug IC50 values[16] for clones of P. falciparum showing different haplotypes of PfCRT.

clone clGCo03 c2GCo03 c3dd2 c4dd2 c5k761 c67g8
mutable residues 72-76 CMNK CMNK CIET CIET CIEl SMNT
mutable residues 72-371 CMNK HAQNIR CMNK HAQNIR CIET HSESTI CIET HSESTI CIEI HSESII SMNT HSQDLR
mean EIS 72-76 -0.275 -0.275 -0.0075 -0.0075 0.22 -0.205
mean EIS 72-371 -0.399 -0.399 -0.102 -0.102 0.08 -0.416
mean SCV 72-76 292.3025 292.3025 264.0275 264.0275 282.7475 251.2875
mean SCV 72-371 295.982 295.982 260.1521 260.1521 275.7521 275.2463
mean CH 72-76 0.25 0.25 -0.25 -0.25 -0.25 0
mean CH 72-371 0.3 0.3 -0.1 -0.1 -0.1 0.1
CQIC50 nM 274 229 143.8 147.4 101.7 126.9
DCQ IC50 nM ND 377 875.2 1182.2 635.3 649.4
AQIC50 nM 20.2 18.2 316 25.8 289 358
DAQ IC50 nM ND 452 70.2 67.9 54.8 86.2
C-VIC50 nM 27.9 21.8 76.2 713 49.4 106.2

Table 4: Hydrophobicity values (log D) of drugs at pH 5.2 [30], their volume, surface area and number of positive charges.

drug logDs ,
cQ -3.44
DCQ -4.61
AQ -1.06
DAQ -2.54
VP 0.59

Vol(A3) (base)

surface area (A?) (base)  protons (positive charges)

1010 606 2
910 555 2
996 568 2
930 554 2
1340 734 |

four degrees of freedom where values for all the five or six
clones were used (DF = n-2). A probability value in the
two-tailed test equal to or less than 0.05 indicated a signif-
icant correlation.

Hydrophobicities at acid pH, molecular volumes and for-
mal charge for the 5 drugs examined are listed in Table 4.

Results

Initial analysis of the effects of residue changes on
physicochemical characteristics of the protein. (Table 5)
On calculating the mean charge, hydrophobicity, and vol-
ume of the side-chain (SCV) for 15 mutations to resist-
ance (including 2 laboratory-selected lines)[13], the
following results were obtained.

1. Charge became more negative by -0.6 (S E: + 0.13).
2. Hydrophobicity increased by +0.40 (0.25).

3. Side-chain volume was reduced by a factor of 0.86
(0.04).

Correlation of physicochemical characteristics with drug
activity in transfectants

Since drug response is drastically changed in CQ-resist-
ance (for example, VE acquires the ability to enhance the
effects of CQ) it is highly relevant to look at correlations
between IC50 values of the four CQ-resistant clones
themselves and PfCRT physicochemical properties of their
mutable residues, as well as to look at the correlations of
these properties with the CQ-sensitive and resistant clones
overall.

Chloroquine-resistant transfectants (Table 6: Figures
1,2,3,4,5,6,7)

Chloroquine (CQ), desethylchloroquine (DCQ) and
amodiaquine (AQ) IC 50 values showed no significant
correlation with any physicochemical feature of the muta-
ble residues of PfCRT.

Desethylamodiaquine (DAQ)

IC50 value was negatively correlated with hydrophobicity
of mutable residues 72-76 and 72-371. Up to 98% of var-
iation in activity of DAQ was explained by hydrophobic-
ity (Figures 1 and 2).

Increased mean side-chain volume of residues 72-76 was
negatively correlated with IC50 and explained up to 96%
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Table 5: Changes in physicochemical parameters seen in mutations associated with CQ-resistance in lines of P. falciparum from field and

laboratory*.

RESIDUE mutants A sc charge res-sens A EIS res-sens A SCV A3 resisens
CYS 72 SER 0 -0.30 0.834
MET 74 ILE 0 0.47 0.957
ASN 75 GLU -1 0.02 LI
LYS 76 THR ILE* ASN* -1 -1 -1 0.92 1.83 0.46 0.652 0.855 0.699
HIS 97 GLN -1 -0.29 0.921

ALA 220 SER 0 -0.51 1.170
GLN 271 GLU -1 0.07 0.923
ASN 326 SER ASP 0-I 0.38 -0.08 0.714 0.907
ILE 356 THR LEU 00 -0.91 -0.20 0.761 1.007
ARG 371 ILE THR -1 -1 2.53 1.62 0.744 0.566
MEAN (+ S.E.) -0.60 (0.13) 0.40 (0.25) 0.86 (0.04)

Table 6: For 4 CQ-resistant transfectants the Pearson negative correlations of IC50 value and physicochemical characteristics (R?
values) are shown, and significant results (P < 0.05) on 2-tailed analyses are asterisked.

drug ratio R+/R EIS 72-76 EIS 72-371 SCV 72-76 SCV 72-371
CcQ 1.5 0.29 0.11 0.37 0.77
DCQ 1.9 0 0.02 0.02 0.76
AQ 1.4 0.41 0.56 0.35 0.23
DAQ 1.6 0.98* 0.98* 0.96* 0
CQ-VE 22 0.97* 0.99* 0.94* 0.0l
y = -73.459x + 69.775 * y=-61.893x + 61.419
N R®=0.9816 © R’ = 0.9802
2 ) = o
g 70 % 50 ¢
<] M p
S g .
EIS 72-76 ‘ » EIS 72371
Figure | Figure 2

Correlation of DAQ IC50 (nM) and EIS 72-76 in 4 CQ-
resistant transfectants.

Correlation of DAQ IC50 (nM) and EIS 72-371 in 4 CQ-
resistant transfectants
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Table 7: For 5 or 6 transfectants of varying sensitivity, the Pearson negative correlations of IC50 value and physicochemical
characteristics (R2 values) are shown, and significant results (P < 0.05) on 2-tailed analyses are asterisked.

drug ratio R/S EIS 72-76 EIS 72-371 SCV 72-76 SCV 72-371 CH 72-76 CH 72-371
CQ 6.4 0.35 0.30 0.77* 0.95* 0.80* 0.80*
DCQ 314 0.28 0.26 0.45 0.93* 0.75* 0.75*%
AQ 2.0 0.17 0.08 0.76* 0.47 0.41 0.41
DAQ 1.9 0.01 0.01 0.98* 0.34 0.10 0.10
CQ-VE 4.9 0.04 0.01 0.98* 0.53 0.32 0.32
. y=-0.9718x + 327.8 - y=-112.7x + 60.561
© R? = 0.9559 R? = 0.9854
= 70 : % 80
E 60 E 60
SCV 7276 . - - . EIS 7-2-371
Figure 3 Figure 5

Correlation of DAQ IC50 (nM) and SCV 72-76 in 4 CQ-
resistant transfectants.

Correlation of CQ-VE IC50 (nM) and EIS 72-371 in 4 CQ-
resistant transfectants.

y=-132.64x + 75.775
R® = 0.9704

-

100

CQ-VE IC50 nM

-0.28 -0.18 -0.08 0.02 0.12 022 0.32 042
EIS 72-76

Figure 4
Correlation of CQ-VE IC50 (nM) and EIS 72-76 in 4 CQ-
resistant transfectants.

of variation (Figure 3). No correlation was seen when all
the ten mutable residues from 72-371 were taken into
account, indicating that there was an opposing side-chain
volume correlation associated with residues 97-371.

The verapamil (VE) effect

For CQ-VE (the verapamil effect), residue hydrophobicity
was also negatively correlated with IC50, for residues 72-
76 and 72-371 (Figures 4 and 5). Up to 99% of variation
in activity of CQV was explained by hydrophobicity.

Increased mean side-chain volume of residues 72-76 was
negatively correlated with IC50 and explained up to 94%
of variation (Figure 6), but, as for DAQ, significant
correlation was not seen with side-chain volume of resi-
dues 72-371.

No significant influence of side-chain charge could be
detected for any of the drugs examined.
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y =-1.7494x + 540.28

. R® = 0.9393
100

CQ-VE IC50 nM
3

245 250 255 260 265 270 275 280 285 290 295 300

SCV72-76

Figure 6
Correlation of CQ-VE IC50 (nM) and SCV 72-76 IN 4 CQ-
resistant transfectants.
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100

DAQ IC50 nM
3

y = 0.5503x + 28.079
R® = 0.9986

40 50 60 70 80 % 100 110 120 130
CQ-VE IC50 nM

Figure 7
Correlation of CQ-VE (nM) and DAQ IC50 values in 4 CQ-
resistant transfectants.

There was a significant positive correlation between 1C50
of CQ-VE, and IC50 of DAQ, while >99% of variation was
explained (Figure 7). In contrast there was no correlation
whatsoever between CQ and DAQ IC50 values, or
between CQ and AQ.

Chloroquine (CQ)-sensitive and resistant transfectants
(see Table 7: Figures 8,9,10,11,12,13)

Taking CQ-sensitive and -resistant lines into account, nei-
ther hydrophobicity of residues 72-76 nor 72-371 showed
significant correlation with the IC50 of any drug studied.

Mean side-chain volume of residues 72-76 was negatively
correlated with IC50 of CQ (Figure 8), AQ, DAQ (Figure
9) and CQ-VE, with 77, 76, 98 and 98% of variation
explained. For CQ and DCQ this was seen for side-chain
volume of 72-371 (95 and 93% of variation explained)
(Figure 10) but not for AQ, DAQ, or CQ-VE.

Mean side-chain charge negatively correlated with IC50 of
CQ, for residues 72-76 and 72-371 (Figure 11), and also
for DCQ, explaining 80 and 75% of variation. No signifi-
cant correlation was seen for AQ, DAQ or CQV.

There was a significant positive correlation between 1C50
of CQ-VE, and IC50 of DAQ, while 99% of variation was
explained (Figure 12).

A similar picture was seen for the correlation of CQ-VE
against AQ IC50, where 86% of variation was explained
(Figure 13).

180

160

o b y = -2.8986x + 890.53
R? = 0.7687
120

100

CQIC50 nM

SCV72-76

Figure 8
Correlation of CQ IC50 (nM) and SCV 72-76 values in 6
transfectants.

In contrast no significant correlation was detected
between CQ and DAQ, or between CQ and AQ.

Discussion and Conclusions

Effects of residue changes on physicochemical
characteristics of the protein

Using mean values of the parameters concerned will obvi-
ously obscure important relationships. However, this
mean approach is only applied to the 10 residues which
change in resistance. So, in the opinion of the author, a
tentative interpretation of the findings is possible in the
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y = -0.943x + 320.29
. R’ = 0.9768

DAQ IC50 nM
8

230 240 250 260 270 280 290 300 310
SCV 72-76

Figure 9
Correlation of DAQ IC50 (nM) and SCV 72-76 values in 5
transfectants.
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160
y=-256.12x + 112.09
o R? = 0.7947

£X3

120

100 *

CQIC50 nM

X

015 -0.05 0.05 0.15 025 0.35 0.45

CH 72-371

Figure 11
Correlation of CQ IC50 (nM) and CH 72-371 values in 6
transfectants.

y=-3.4201x + 1043.1
160 R? = 0.9475

3

CQIC50 nM

SCV72-371

Figure 10
Correlation of CQ IC50 (nM) and SCV 72-371 values in 6
transfectants.

100

DAQ IC50 nM
3

. y=0.4945x + 32.724
R? = 0.9904

20 40 60 80 100 120 140

CQ-VE IC50 nM

Figure 12
Correlation of CQ-VE IC50 (nM) and DAQ IC50 values in 5
transfectants.

light of the 3 hypotheses outlined below, on the role of
changes in the sequence of integral protein PfCRT in the
digestive vacuole (lysosome) membrane upon sensitivity
to chloroquine. These hypotheses assume that the
probable target of the 4-aminoquinoline blood-schizon-
tocidal drugs like CQ and DAQ is haematin released by
digestion of haemoglobin inside the vacuole [4], and that
a minimal intravacuolar drug concentration is needed for
effective (reversible) interaction with the target [24]. They
also assume that PfCRT has anion-, possibly chloride-
channel-like, function [11,25].

1. Chloride channel function is diminished.This could
follow from the more negative mean charge. A shortage of
charge-balancing anion within the vacuole could result in
arise in vacuolar pH. The rise in vacuolar pH could reduce
drug uptake [3]. The possible role of increase in
hydrophobicity and reduction of the side-chain volume is
obscure.

2. Chloride channel function is enhanced.There is no
easy interpretation of how the changes seen could
enhance the chloride channel function, although equally

Page 8 of 12

(page number not for citation purposes)



Malaria Journal 2003, 2

AQ IC50 nM
b

y=0.1954x + 15.261
R? = 0.861

0 20 40 60 80 100 120 140

DAQ IC50 nM

Figure 13
Correlation of DAQ IC50 (nM) and AQ IC50 values in 5
transfectants.

there is no reason why such an outcome would be
impossible. The expected result, a lowered vacuolar pH,
could reduce drug interaction with haematin [12].

3. Drug exits through modified chloride channel.More
negative mean charge on a channel lining, an increase in
its hydrophobicity, and the reduction of bulk of the side-
chains would all enhance the ability of a hydrophilic,
positively charged bulky drug like CQ (Table 4) to escape
through the putative channel lumen [7,25].

If the observation of markedly different effects of amino
acid changes in PfCRT on the activity of antiplasmodial
diastereomers quinine and quinidine [13,16] is also taken
into account, hypotheses 1 and 2, being based simply on
postulated intravacuolar pH changes, are rendered
unlikely, but hypothesis 3, depending on structural fea-
tures, is supported.

Conclusion
An admittedly crude analysis supports the hypothesis that
modifed PfCRT acts as a channel for exit of CQ cation.

Correlation of physicochemical characteristics with drug
activity in transfectants

In view of the support of the first stage of the investigation
for the modified channel hypothesis, further observations
are interpreted largely in the light of the possibility that
CQ escapes from the lysosome through the modified
PfCRT channel in CQ-resistant lines, but is unable to do
so in the CQ-sensitive lines. If an exit channel is involved,
it is a reasonable assumption that most or all of the resi-
due changes in resistance are likely to involve side-chains

http://www.malariajournal.com/content/2/1/31

lining or closely associated with the channel lumen. Even
side-chains not protruding into the channel lumen can
affect overall delocalized charge, and side-chain bulk and
hydrophobicity will affect residue packing and alter
channel spatial characteristics. So comparing mean
physicochemical parameters of these mutable residues in
CQ-resistant and -sensitive PfCRT sequences should
inform us about features of the channel associated with
resistance.

CQ-resistant transfected lines

Response to CQ and DCQ

In CQ-resistant transfected lines, CQ and DCQ are
expected to bind minimally to the lining side-chains of a
PfCRT channel in the most resistant parasites. The high
correlation of residue mean side-chain volume with drug
sensitivity supports the possible action of enlarged side-
chains in impeding the efflux of the drug, maintaining its
concentration in the vacuole and enhancing its interac-
tion with haematin.

No significant influence of charge or hydrophobicity was
detectable, and this may be expected in the absence of
what appears to be the crucial positive charge on the side-
chain of residue 76, and the expected lack of adhesion of
CQ, highly hydrophilic at acid pH, to the hydrophobic
lining of the channel.

Response to AQ

The results seen with AQ are surprising, since in view of
the drug's very high hydrophobicity in acidic conditions,
one might expect to see a marked correlation with activity.
However, the range of activity over the 4 CQ-resistant
clones is only a factor of 1.4, and any influence of residue
side-chain hydrophobicity on activity is not detectable in
this analysis which is of very limited power (only 2
degrees of freedom). It is also not impossible that the AQ
parent drug may have an additional mode of action to
haematin binding. It is noteworthy that AQ sensitivity in
vitro has shown a poor relationship with efficacy of
treatment, but this probably mainly reflects the greater
importance of the metabolite DAQ in vivo.

Response to DAQ

A very important role of hydrophobicity of the mutable
residues was detected, equivalent for residues 72-76, and
overall for 72-371, where 98% of variation was explained,
in marked contrast with CQ. This is expected in view of
the 10-fold higher hydrophobicity of DAQ in acidic
conditions compared with CQ (Table 4) and may explain
the retention of activity of DAQ in CQ-resistant lines. The
important role of hydrophobicity in blood-schizontocidal
drugs active in chloroquine-resistance was first reported
by Bray et al. [26].
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Table 8: Prediction of DAQ IC50 nM value for CQ-resistant lines on the basis of mean EIS for the 72-76 haplotype and the linear equation

in Fig. 1. (IC50 nM = -73.459(mean EIS) + 69.775).

EIS C5K761 C34Dd2 C67G8Brazil  Jav/ Eculll10 Cambodia Cambodia Cambodia
Laboratory SE Asia IAJColombia  Ecuador
HAPLO. CIEI CIET SMNT CMET CMNT CMNT CIDT CTNT
72 0.04 0.04 -0.26 0.04 0.04 0.04 0.04 0.04
74 0.73 0.73 0.26 0.26 0.26 0.26 0.73 -0.18
75 -0.62 -0.62 -0.64 -0.62 -0.64 -0.64 -0.72 -0.64
76 0.73 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18
SUM 0.88 -0.03 -0.82 -0.5 -0.52 -0.52 -0.13 -0.96
MEAN 0.22 -0.0075 -0.205 -0.125 -0.13 -0.13 -0.0325 -0.24
predict IC50 DAQ (nM) 53.6 703 84.8 79.0 793 793 72.2 87.4
ACTUAL 54.8 69.05 86.2
PGH-I factor Y86---N86 Y86---N86 S. America S. America S. America Y86---N86 Y86---N86 Y86---N86
| R 1.0 | 4 1.0 2.7 2.7 2.7 PR 1.0 | PR 1.0 I B 1.0
predict field sensitivity (IC50) nM
1C50 DAQ (nM) 76mmmmee- 54 98------- 70 230 213 213 [ - 79 101-----72 122-----87

(To adjust for the PGH- 1 factor, derived from the study of Sidhu et al, 2002 [16], multiply by 1.4 where N86Y is found in Africa and SE Asia, and 2.7
for the usual S. American pfmdr| haplotype of S1034C, N1042D, D1246Y [27].)

Supporting the importance of residues 72-76, the mean
side-chain volume of these residues negatively correlates
with IC50 and explains 96% of variation. There is no
correlation between activity and mean side-chain volume
for the whole sequence.

Again, no effect of side-chain charge was detectable.

These results suggest that not only is residue hydrophobic-
ity for 72-76 important for activity of DAQ but there may
be a "bottleneck" in the region of these residues. Caution
is necessary, since side-chain size and hydrophobicity are
mutually correlated for hydrophobic residues. In these
lines, with no positive charge at PfCRT residue 76, the size
and hydrophobicity in some residues in the 72-76 region
may relate to the same residues, since important differ-
ences in hydrophobicity tend also to be changes in bulk.

Antiparasitic effect of CQ in combination with a
resistance-reversing concentration of VE

The antiparasitic activity of CQ in the presence of VE
showed a marked correlation with the hydrophobicity of
the mutable residues, where up to 99% of variation was
accounted for.

Increase in the side-chain volume of residues 72-76 was
also strongly correlated with CQ activity in the presence of
VE (94% of variation accounted for), but significant cor-
relation was not seen with the whole sequence.

Again, no effect of charge was detected.

These results indicate that the addition of VE causes CQ to
behave like DAQ. It appears probable that the positively
charged, highly hydrophobic, and bulky VE (Table 4) is
able to bind hydrophobically to residues 72-76 in the
modified PfCRT. It hinders the efflux of CQ by mutual
repulsion of positive charges and by partially blocking the
channel (cautions about side-chain size and hydropho-
bicity need to be repeated here).

A significant positive correlation was detectable between
the activities of CQ-VE and of DAQ on these CQ-resistant
lines, explaining >99% of variation (Fig. 7).

CQ-sensitive and - resistant transfected lines

In this analysis no relationship between mean residue
hydrophobicity and drug activity was seen, suggesting
hydrophobic interactions between DAQ or VE and the
channel are important only when residue 76 has lost its
positive charge and allows these drugs access to the rele-
vant residues.

However, mean side-chain volume of residues 72-76 was
correlated with increased activity of CQ, AQ, DAQ and
CQ-VE. (77, 76, 98 and 98% of variation explained). This
emphasises the importance, especially for activity of AQ,
DAQ and CQ-VE, of a possible "bottleneck" associated
with these residues, since activity of CQ and DCQ but not
of AQ, DAQ or CQV also correlated with mean side-chain
volume of 72-371. This latter observation emphasises the
influence of bulky residues in the putative channel in
enhancing CQ activity probably due to the bulk of the
drug and the relative narrowness of the channel.

Page 10 of 12

(page number not for citation purposes)



Malaria Journal 2003, 2

Mean side-chain charge correlated with increased sensitiv-
ity to CQ and DCQ, explaining 80 and 75% of variation,
for residues 72-76 and 72-371. This was not seen for AQ,
DAQ or CQ/VP. This emphasises the importance of
mutual positive charge-repulsion preventing CQ and
DCQ from entering the channel.

The contrast between the importance of hydrophobicity
in the CQ-resistant lines, and the inability to demonstrate
an effect of this in the sensitive and resistant lines
together, in spite of the higher power of the analysis, can
be interpreted on the channel efflux model as resulting
from the positive charge on the side-chain of residue 76 in
the 2 sensitive clones preventing the various drugs reach-
ing the hydrophobic region of the sequence including
residues 72-76. The fact that 4 out of 5 residues here are
subject to mutation suggests that, in sensitive clones, it
forms a barrier to exit of 4-aminoquinoline cations.

The correlation observed, even including the sensitive
clones in the analysis, between sensitivity to CQ in the
presence of VE (the verapamil effect), and sensitivity to
DAQ suggests that clinical activity of AQ is likely to be cor-
related with the magnitude of the in vitro VE-effect (all
other things, especially the PGH-1 status [6,27], being
equal). The VE effect is much smaller in isolates where the
72-76 sequence is the "New World" S-MNT haplotype
[19] (residue 73 is always valine). It is of interest to look
at some other S. American haplotypes such as Jav and 1A]
Colombia (C-MET) and Ecuador Ecu 1110 (C-MNT) [8].
These can both be predicted to be more sensitive to DAQ),
and to have a higher VP-effect than the usual South Amer-
ican (S-MNT), even taking into account the large effect of
PGH-1 amino acid changes at residues 1034, 1042 and
1246 [27]. The South American PfCRT S-MNT haplotype
has recently been reported from Papua New Guinea
together with the PGH-1 N86Y haplotype [19], and the
Ecuador PfCRT 72-76 haplotype C-MNT, and 2 others, C-
IDT and C-TNT have been found in Cambodia [28]. Pre-
dictions are possible for the effect of these on DAQ sensi-
tivity, with and without the presence of PGH-1 N86Y,
assuming that these two genes, pfcrt and pfmdrl, are the
main ones concerned in resistance (Table 8). If AQ were
to be widely used in Cambodia, the C-MNT and C-TNT
haplotypes are likely to become more prevalent. Similarly
in Papua New Guinea the S-MNT PfCRT haplotype is
expected to give some resistance to treatment with AQ,
and should become more prevalent if the drug becomes
widely used.
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