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Abstract

Background: The intraerythrocytic development of Plasmodium falciparum, the most virulent
human malaria parasite involves asexual and gametocyte stages. There has been a significant
increase in disparate datasets derived from genomic and post-genomic analysis of the parasite that
necessitates delivery of integrated analysis from which biological processes important to the
survival of the parasite can be determined.

Methods: In order to resolve genes associated with stage differentially expressed transcripts, we
have developed and implemented an integrative approach that combines evidence from P.
falciparum expressed sequence tags (ESTs), genomic, microarray, proteomic and gene ontology
data.

Results: A total of 143 gametocyte-overexpressed and 51 asexual-overexpressed transcripts were
identified. A subset of 74 genes associated with these transcripts showed evidence of stage-
correlated protein expression, of which 53 have not been experimentally characterised. Our study
has revealed (1) possible regulatory mechanisms in malaria parasites' gametocyte maturation, (2)
correlation between EST and microarray data for a P. falciparum gene family to present unique EST-
derived information, (3) candidate drug and antigenic targets on which computational and
experimental studies can be performed, and (4) the need for more empirical studies on gene and
protein expression in malaria parasites.

Conclusion: Applying different domains of data to the same underlying gene set has yielded novel
insights into the biology of the parasite and presents an approach to appraise critically the data
quality of post-genomic datasets from malaria parasites.

Background ciparum, obtained with gene transcript and genome

Pathogen bioinformatics have been developed and
applied as a vehicle to discover novel genes and the search
for virulence-associated genes combining approaches that
assay gene expression, adaptive evolution and gene trans-
fer [1-3]. In this study, layers of data about Plasmodium fal-

sequencing as well as gene and protein expression profil-
ing technologies, were integrated to reveal insights into
previously undiscovered regulation during intraerythro-
cytic development. Genes that merit further analysis are
described. This integrative approach uses an evidence-
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based assessment of disparate datasets similar to gene
structure prediction approaches that rely on accumulation
of evidence such as similarity to known genes, nucleotide
compositional features, intron/exon boundaries and pro-
moter sequences [4].

The high malaria burden in Africa [5,6] necessitates
increased efforts to understand the biology of the patho-
gen with a view to discovering new drugs, candidate vac-
cines and diagnostics, as well as improving existing ones.
The publication of the genomes of the human malaria
parasite P. falciparum and the rodent malaria parasite Plas-
modium yoelii as well as ongoing sequencing projects of
other Plasmodium species presents new opportunities to
achieve the above-mentioned goals [7-9]. In addition,
there have been efforts to obtain and analyse on a large-
scale, gene expression profiles (transcriptome) of Plasmo-
dium species using Expressed Sequence Tags (ESTs) [1,10-
13], full length ¢cDNAs [14], Serial Analysis of Gene
Expression (SAGE) [15,16] and microarrays [17-19]. Pro-
tein expression profiles (proteome) on particular stages of
the P. falciparum life cycle are also available [20,21].

The random single-pass sequencing of a cDNA library to
generate short (200-500 bp) nucleotide sequences that
tag an expressed gene sequence is an established method
of gene discovery [22,23]. EST gene indices are generated
by computer-based methods to organise these tags by
assigning them into groups to remove redundancies and
yield reconstructed transcripts that represent consensus
sequences of each group [22,24,25]. These indices are
being used to understand the complexity of the human
genome, especially in providing information on alterna-
tive transcripts, non-translated transcripts, truly unique
genes and extremely short genes that will complement the
genome data [25]. The availability of the complete
genome of P. falciparum 3D7 makes it possible to provide
similar information for the parasite. In fact, additional
EST and full-length ¢cDNA sequences are required to
improve the current annotation and verify predicted genes
[7]. EST sequencing projects on Plasmodium have identi-
fied novel genes [1,10,13] but only limited analyses have
been performed on ESTs for coordinate and differential
gene expression [13].

Plasmodium ESTs from a variety of cDNA libraries are
available in the GenBank EST database (dbEST). As of
February 2003, 11 libraries comprising of nine asexual,
one sporozoite and one gametocyte were available in
dbEST. ESTs from some of these libraries have been
indexed [1,10,13,26]. Microarrays, mRNA differential dis-
play and EST-based analysis have been used to study tran-
scriptional differences between asexual and gametocyte
stages of P. falciparum, revealing stage-specific genes
[13,17,27]. These studies were done prior to the publica-
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tion of the genome sequence of strain 3D7. Furthermore,
in the case of Li and colleagues [13], the functional anno-
tation was selective. An EST-based analysis with an
improved functional annotation that combines the auto-
mated annotation from P. falciparum gene indices and the
curated annotation in the Plasmodium Genome Database
(PlasmoDB) [28] is needed. In addition, integration of
proteomic data with such analysis has been recognized as
an important component in drug target identification and
validation in the human genome [29].

The number of ESTs used to generate a consensus
sequence in a gene index can provide a rough estimate of
the mRNA abundance in the tissue or cell of origin [23].
Furthermore, statistical tests have been developed to iden-
tify genes that are differentially expressed (significantly
overexpressed) in a particular tissue compared to one or
more other tissues [30,31]. The differences in EST counts
have been applied to understand gene expression in dif-
ferent metabolic pathways, tissues or stages [32-34]. These
differences appear to correlate with biology of the tissue
or stage under investigation. Microarray and SAGE meth-
ods are more narrow but sensitive for differential gene
expression studies and can be used to validate broader
EST-based analysis [13].

The life cycle of P. falciparum involves stages in the female
anopheline mosquito vector and stages in the human host
[35]. The parasite goes through pre-erythrocytic and
intraerythrocytic stages in the human host. The pre-eryth-
rocytic stage involves invasion and growth within liver
cells, whereas the intraerythrocytic cycle is a multi-stage
process, which includes differentiation into asexual stages
(rings, merozoites, trophozoites and schizonts) as well as
sexual stages (male and female gametocytes). The clinical
symptoms of malaria are produced primarily as a conse-
quence of the asexual life cycle, while the sexual cycle,
which can be divided into early (I-1I) and late (III-V)
gametocyte stages [36], is necessary for the development
of the parasite in the mosquito. The intensive research on
gene expression in the asexual stage compared to gameto-
cyte stage can be inferred from the number of cDNA
libraries deposited in the dbEST as mentioned above. The
late (mature) stage gametocyte cDNA library (ID:10054)
should contain transcripts important for gametocyte mat-
uration and also formation of gametes and fertilization
[37]. The availability of a cDNA library of 3D7 (ID:9765)
asexual mixed stage (rings, trophozoites and schizonts)
and genome data from the same strain presents an oppor-
tunity to determine differentially expressed transcripts
between the two libraries.

Transcription and translation in malaria parasites is com-
plex and characterized by features such as multiple tran-
scripts, antisense transcripts, stage-specific transcripts,
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chromosomal clusters encoding co-expressed proteins,
unspliced mRNA, gene family member-specific expres-
sion and translational control [20,38,39]. These features
contribute to parasite fitness and ability to undergo a
complex life cycle. Understanding the role of these fea-
tures in the regulation of important intraerythrocytic bio-
logical processes can deliver new tools for malaria control.
For example, a proportion of genes involved in glycolysis,
proteolysis and apicoplast targeting of nuclear encoded
genes are thought to be regulated during the transition
from asexual to sexual stages [7,40]. The integration of
data from EST sequencing with those from genomic,
microarray and proteomic technologies could provide
insights into molecular mechanisms that contribute to the
regulation of these processes.

The significant increase in disparate datasets from genome
sequencing and post-genomic analysis of P. falciparum
necessitates delivery of integrated analysis from which
biological processes important to the survival of the para-
site can be determined. The integrated approach devel-
oped has identified stage-overexpressed genes with
computational and experimental evidence to support
their functional analysis. Furthermore, the approach is
demonstrated as a means to appraise critically the data
quality of the increasing number of post-genomic datasets
from malaria parasites.

Methods

Integrative analysis approach

The integrative analysis approach that was used to com-
bine genomic, expressed sequence tag, microarray, pro-
teomic and gene ontology data from P. falciparum 3D7 is
presented in Figure 1. The starting integrative criterion was
significant overexpression of a transcript in a stage relative
to the other stage. Criteria used and their acceptable
ranges are presented in Table 1.

Expressed sequence tags and transcript reconstruction

Expressed Sequence Tags derived from P. falciparum 3D7
mixed asexual stage (dbEST ID: 9765) and gametocyte
(III-V) stages (dbEST ID: 10054) cDNA libraries were
retrieved using Sequence Retrieval System (SRS) version
7.02 from EMBL database (Release 74, March 2003).
These sets of ESTs were sequenced by Washington Univer-
sity Plasmodium EST Project [13]. A total of 15,126 ESTs
consisting of 11,872 asexual and 3,254 gametocyte ESTs
were downloaded. Transcript reconstruction of these ESTs
was performed using stackPACK clustering system version
2.2 [22,24] as described previously for reconstructing Plas-
modium transcripts [1]. Briefly, the process starts with
removal of artifactual sequences such as repeats and vec-
tor sequences. The "clean" sequences are grouped using a
loose clustering approach into clusters and the clusters
assembled into contigs. The alignments of sequences that
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make up these assembled clusters are analysed to produce
consensus sequences of maximal length representing the
reconstructed transcripts. stackPACK was chosen for its
ability to provide extended consensus sequences [41]
(Hide et al. in preparation). Clusters containing only a
single sequence are called singletons. A gene index, man-
ufactured by such a method, is therefore a non-redundant
representation of a set of reconstructed gene fragments
that approximates to the best available representation of
genes for that organism. The clustering was unsupervised
in that known sequences such as mRNA, full-length
cDNA, previously reconstructed ESTs or exon constructs
were not used to guide the process. This type of clustering
was required to provide valid input data for the software
used to calculate the differential expression statistics
applied in this study.

Differential gene expression analysis

Audic-Claverie (AC) and the Chi-square (?) 2 x 2 statis-
tical tests for differential gene expression were used to
identify stage-overexpressed transcripts. These pairwise
tag statistics are based on EST counts of contigs (assem-
bled clusters) with at least five ESTs since for a 95% confi-
dence interval, the first value that is significantly different
from 0 is 5 [30,32].

The calculation of these statistics was implemented with
the web version of IDEGG6 software; http://tele
thon.bio.unipd.it/bioinfo/IDEG6/ with a significance
threshold of 0.05 [31]. A suite of PERL scripts was written
to extract EST counts from output of stackPACK 2.2 and
present the input dataset in the format required by
IDEGG6. Data extracted from the output file of IDEG6 were
(1) contig description; (2) observed and normalised EST
counts from the two libraries; and (3) probability that a
transcript is differentially expressed as represented by P-
values for the two tests. Transcripts for which the P-values
for both statistics were less than 0.05 were taken as differ-
entially expressed. Since these statistics determined tran-
scripts  differentially expressed, the terms asexual-
overexpressed and gametocyte-overexpressed were used
for transcripts (or genes) with significant overexpression
in mixed asexual stage and late stage gametocytes
respectively.

Protein expression profiles and functional annotation of
transcripts

Annotated protein predictions (release 4.0) of the whole
genome sequence of P. falciparum 3D7 was obtained from
the PlasmoDB website; http://www.plasmodb.org. A total
of 5,334 predicted protein sequences were obtained. The
overview page for each gene was retrieved using wget and
saved as a Hypertext Markup Language (HTML) file on a
local computer to allow ease of manipulation without
accessing the database over the Internet. A PERL script was
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Table I: Threshold values for steps in integrative analysis of Plasmodium falciparum data

Criterion and acceptable range

Reconstructed transcript derived from minimum of 5 ESTs
Agreement of pairwise differential expression statistics at P < 0.05
Maximum BLASTX E-value of 10-10against predicted proteins

Correlation of functional annotation with Plasmodium falciparum gene indices

Evidence that protein is expressed in same stage as gene
Gene Ontology classification: proteolysis, glycolysis or localised to plastid
Microarray: Published data on a gene family

used to query each page for the words sporozoite, mero-
zoite, trophozoite or gametocyte preceded by an apostro-
phe (') followed by a specific text as for the gametocyte;
'gametocyte stage peptide fragment(s) detected by mass
spectrometry'. A match of this text was taken as evidence
of expression and protein expression at the stage was
assigned 1 or else O for no evidence. Thus, a 4-digit binary
accession that indicates evidence for expression in sporo-
zoite, merozoite, trophozoite and gametocyte is used to
represent the 15 protein expression profiles presented by
Florens et al. [20] and an additional accession for lack of
evidence in all stages (0000).

Reconstructed transcripts were annotated on the basis of
similarity searches using NCBI BLASTX version 2.2.1
against predicted proteins of P. falciparum 3D7. Statistical
significance cut-off was set at an E-value of 10-19 following
that of Carlton et al. [1]. Since an unsupervised clustering
was performed, to support the functional annotation, the
annotations obtained were correlated with the TIGR P. fal-
ciparum Gene Index; http://www.tigr.org/tdb/tgi/pfgi/
(Version 6.0, Release Date - January 11, 2003) and the
Apicomplexan EST Database (ApiESTDB); http://
www.cbil.upenn.edu/paradbs-servlet/. Both these indices
were generated with supervised clustering. The correlation
was done by computational extraction of associated anno-
tation of the TIGR Tentative Consensus (TC) followed by
manual checking to determine if the annotation obtained
in our analysis was identical to that of the TIGR TCs. This
was done for only differentially expressed contigs. If the
annotations were not identical, the reconstructed
sequence was excluded from further analysis. ApiESTDB
was consulted when additional support was required to
make a decision.

Mining gene ontology annotation associated with
transcripts

Genes classified as being involved in glycolysis
(GO:0006096), proteolysis (GO:0006508) or targeted to
the plastid (GO:0009536) were retrieved by searching
PlasmoDB gene overview page for the respective GO iden-
tification (ID) number in a similar way as described for

the protein expression profile except the search text was
the respective GO ID preceded by the greater than sign (>)
for example >G0:0006096. This text limits the search to
the Gene Ontology section of the gene overview page. The
number of genes retrieved was: 20 for glycolysis, 98 for
proteolysis and 553 for plastid component. This corre-
sponds to values obtained from the web-based PlasmoDB

query page.

Correlation of EST-based abundance with microarray
expression levels

The numbers of ESTs used to generate a reconstructed
sequence were retrieved from the FASTA sequence descrip-
tion line of all reconstructed sequences generated by
stackPACK 2.2. The levels of expression or average signal
intensities obtained from microarray experiments on the
serine repeat antigen (SERA) gene family of P. falciparum
[19,42-44] were used to compare the levels of expression
obtained using ESTs. This gene family is characterised by
a cysteine proteinase framework [39] and was selected
because its members are annotated as being involved in
proteolysis. Published microarray studies on this family
have been obtained that facilitated comparative analysis
with EST data.

Results

Transcript reconstruction and functional annotation of
transcripts

Transcript reconstruction using stackPACK 2.2 resulted in
1,760 contigs and 3,391 singletons. A total of 569 tran-
scripts had an EST count of at least five ESTs. Functional
annotation by similarity searching was performed for all
reconstructed transcripts. A total of 210 transcripts that
were differentially expressed were manually checked for
correlation with TIGR and/or ApiESTDB P. falciparum
gene indices. This process yielded 194 transcripts with cor-
related functional annotation.

Differential expression transcripts and protein expression
profiling

The majority of the stage-overexpressed transcripts were
from the late gametocyte stage. However, the mixed
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Table 2: Summary of functional annotation and protein expression of Plasmodium falciparum transcripts

Transcripts Number
Differentially expressed 210
Correlated functional annotation 194
Stage-overexpressed

Mixed asexual stage 51

Late stage gametocyte 143
With significant match to predicted proteins

Mixed asexual stage 48

Late stage gametocyte 128
Correlated protein expression

Mixed asexual stage 40

Late stage gametocyte 38

asexual stage had the highest percentage (83%) of genes
with evidence of protein expression in the same stage
(stage-correlated protein expression) compared to 31%
for the late gametocyte stage. The observations are sum-
marised in Tables 2 to 5. The 194 transcripts differentially
expressed between the two libraries consisted of 51 from
the mixed asexual stage and 143 from the late gametocyte
stage. The complete list with transcript identification used
in this study, correlated transcripts in the TIGR P. falci-
parum gene index, gene locus name, gene product descrip-
tion, representative EST or ESTs (for genes with
representation from both libraries), observed and nor-
malized EST counts for the two stages, as well as protein
expression profile, are presented in the additional files 1
and 2 for mixed asexual stage and late gametocyte stage
respectively. A list of stage-overexpressed transcripts that
match those of Li et al. [13] is presented in additional file
3.

A total of 128 gametocyte-overexpressed and 48 asexual-
overexpressed transcripts had a significant match with the
predicted P. falciparum 3D7 proteins. Seventy-four genes
(40 asexual-overexpressed, 34 gametocyte-overexpressed)
showed evidence of stage-correlated protein expression
(Tables 3 and 4). The well-studied S-antigen (PF10_0343)
is one of the 8 asexual-overexpressed genes without stage-
correlated protein expression. Four gametocyte-overex-
pressed genes (PFB0730w, PFI1210w, PF10_0115 and
PFLO105w) had more than one reconstructed transcript.
Multiple transcripts were generated when the recon-
structed transcripts associated with a gene are not contig-
uous, and thus were not assembled into the same contig.
Fifty-three of the 74 genes were classified as novel in that
either the description of the gene product is labelled
hypothetical protein or have the word putative.

In order to identify gametocyte-overexpressed genes that
also have stage-correlated protein expression in the pro-

teomics data of Lasonder et al. [21], the spreadsheet file
containing 1,289 unique malaria proteins from that study
was processed to yield a 3-digit binary accession repre-
senting evidence for protein expression of genes in tro-
phozoites/schizonts, gametocytes and gametes. Fifteen of
the 34 gametocyte-overexpressed genes were detected by
both proteomic analyses (Table 6). Our analysis points to
the need to clarify potential confusion in the annotation
of the sexual stage specific protein precursor or Pfs16
(PFD0310w), a known marker for the earliest events of
sexual differentiation [45]. The locus name (PF11_0318)
of another gene, PF16, may be assigned to this gene [21].
PF16 has sequence similarity to a sperm flagella protein
localized to the central pair of the axoneme. The
gametocyte-overexpressed gene identified in this study
was confirmed to be Pfs16 and not PF16 by the identical
functional annotation of the associated consensus
sequence from this study and that in the TIGR P. falci-
parum gene index.

The identified asexual-overexpressed genes that have been
experimentally characterised have known roles in protein
degradation, purine salvage, rhoptry biogenesis and pro-
tein trafficking, schizont rupture, merozoite invasion,
phospholipid biosynthesis, nuclear metabolism, oxida-
tive stress defense, cell proliferation and membrane
biogenesis.

Mining gene ontology annotation associated with
transcripts

Glyceraldehyde-3-phosphate dehydrogenase
(PF14_0598) and ATP-dependent phosphofructokinase
(PF11_0294) are two of 20 genes known to be involved in
glycolysis. They demonstrate differential expression and
show evidence of stage-correlated protein expression.

Microarray average intensities [19] available in PlasmoDB

for PF11_0294 support its gametocyte-overexpression
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Transcriptt  TIGR Tentative Consensus®  Gene locus name ¢©

Description of gene product

Representative EST(s) d

cn672 TC6879 PFI0265¢ rhoptry protein, putative Bl670632
cnl243 TC6890 TC6891 PFL1385c 101 kd malaria antigen BI670667
cn656 TC6894 PFI1_0098 endoplasmic reticulum-resident calcium binding BI670528 BM274707
protein
cn346 TC6883 TC6884 TC6885 PF14_0598 ¢ glyceraldehyde-3-phosphate dehydrogenase BI670581 BM273393
cné59 TC6886 TC6887 PFB0340c & cysteine protease, putative BI670678
cn646 TC6895 PF14_0102 rhoptry-associated protein | BI670673
cnl292 TC6896 PFI0875w Heat shock protein BI670644
cn634 TC6897 TC6898 TC8065 MALI3PI.214 phosphoethanolamine N-methyltransferase, putative ~ BI670572
cnl258 TC6900 PFI1445w hypothetical protein BI670690
enl 175 TC6899 PFCO120w Cytoadherence linked asexual protein, CLAG BI670808
cn637 TC6921 PFEOI65w actin depolymerizing factor, putative BI813965 BM274236
cnl246 TC6922 MALSPI1.142 ¢ proteasome beta-subunit BI670563
cn628 TC6926 PF10_0203 ADP-ribosylation factor BI814382
cnl338 TC6943 PF14 0141 ribosomal protein L10, putative BlI670722
cnl375 TC6945 MAL7PI.77 hypothetical protein BI814179
cnl569 TC6954 TC6955 PFEO915c proteasome subunit beta type | Bl1670682
cnl255 TC6969 TC7520 PFB0445c¢ helicase, putative BI670715
cn604 TC6958 PFLO210c eukaryotic initiation factor 5a, putative BI670597
cnl249 TC6970 PFO7_0054 histone h2b, putative Bl670668
cnl465 TC6959 PF14_0368 2-Cys peroxiredoxin BI670633
cn58l TC6975 PF14_0543 f hypothetical protein, conserved BI814501
cnl219 TC6956 PF10_0345 merozoite surface protein-3 BI670568
cnl339 TC6992 PFL1420w macrophage migration inhibitory factor homolog, BI815759
putative
cnl396 TC6971 PFI0_0I21 hypoxanthine phosphoribosyltransferase BI814714
cn567 TC6917 PF10_0268 merozoite capping protein-| BI670775
cnl555 TC7001 PFIO155¢ ras family GTP-ase, putative BI814010
cn561 TC7038 PF10_0016 acyl CoA binding protein, putative BI815304
cnl 165 TC7015 PFD0240c hypothetical protein BI816061
cnl379 TC7007 PF0O7_0087 f hypothetical protein BI813959
cnl475 TC6914 PFI1090w s-adenosylmethionine synthetase, putative BI813864
cnl8l| TC6989 TC6990 PFI14_0323 calmodulin BI814267
cn564 TC6993 PFE1050w adenosylhomocysteinase(S-adenosyl-L-homocysteine  BI814536
hydrolase)
cn6l13 TC7023 TC8311 PFB0490c hypothetical protein BI815328
cn 1485 TC7032 PF13_0228 40S ribosomal subunit protein S6, putative Bl670560
cnl68l TC7025 PF13_0328 proliferating cell nuclear antigen BI813993
cn558 TC7018 PF14_0678 exported protein 2 BI670646
cnl605 TC6904 MALI3PI.130 hypothetical protein BI814223
cnl1997 TC7030 PFE0660c uridine phosphorylase, putative BI814451
cn557 TC7036 PF13_0092 cholinephosphate cytidylyltransferase BI814410
cnl368 TC7086 PF14_0569 hypothetical protein BI814420

aTranscript generated by stackPACK 2.2. b TIGR Tentative Consensus correlated with transcript available at http://www.tigr.org/tdb/tgi/pfgil. ©
Gene can be viewed at http://www.plasmodb.org. 4 EST can be retrieved at http://www.ncbi.nlm.nih.gov. ¢ Gene involved in glycolysis. f Apicoplast-

targeted gene. 8 Gene involved in proteolysis.

when compared to a closely related gene, PFI0755c¢ that
also codes for a phosphofructokinase and shows protein
expression in intraerythrocytic stages [20,21]. The micro-
array expression values for PFI0755c¢ in trophozoite and
schizont stages are 17,223.33 and 7,894 respectively in
contrast to ~1,600 in both stages for PF11_0294. Inspec-
tion of the predicted protein features of PF11_0294
revealed the presence of two protein domains: gonadotro-

pin-releasing domain, GnRH (Pfam ID: PF00446) and
laminin N-terminal (Domain VI) (Pfam ID: PF00055).
These domains are found in proteins that are extracellular
and have a role in regulation of germ cell development.

PFB0340c, a cysteine protease and member of the SERA
gene family was significantly overexpressed in mixed asex-
ual stage. Other genes in the SERA family for which EST
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Table 4: Gametocyte-overexpressed Plasmodium falciparum transcripts

Transcript?  TIGR Tentative Consensus b Gene locus name ¢ Description of gene product Representative EST(s) d

cn298 TC6923 TC7279 TC9304 PFDO3 10w sexual stage-specific protein precursor BI814617 BM273325
cnl56 TC6995 PFLO795c hypothetical protein BI813971 BM273682
cnl44 TC7077 PF11_0525f hypothetical protein BM273367

cn369 TC6974 PF10_0264 40S ribosomal protein, putative BI814069 BM273547
cn57 TC7312 TC7511 PFL2420w hypothetical protein BM273440

cn271 TC6963 PFB0730w DNA helicase, putative BM273418

cn291 TCé911 PF07_0029 heat shock protein 86 Bl670622 BM273491
cn43 TC6936 PFL2215w actin BM273378

cnl05 TC7084 PFO7_0061 hypothetical protein BI936117 BM273354
cnl68 TC6963 PFBO730w DNA helicase, putative BM273308

cnl78 TC6987 PFI1210w hypothetical protein BM274237

cn337 TC7315 PFO8_0081 hypothetical protein BM274748

cn404 TC7057 PF10_0115 QFI122 antigen BM273319 BQ596378
cn46 TC7235 PFLO105w hypothetical protein BM273988 BQ577236
cn246 TC7159 PF14_0359 hypothetical protein, conserved BI814120 BM273571
cn60 TC7496 PF10_0328 hypothetical protein BM273370

cnl55 TC7437 PFI1_0294 ¢ ATP-dependent phosphofructokinase, putative BM273524

cn269 TC7203 MALG6P1.306 hypothetical protein BI815038 BM273934
cn347 TC6987 PFI1210w hypothetical protein BM273395

cnl9 TC7561 MALI3PI.148 P. falciparum myosin BM274131

cn683 TC7619 PFD0235c hypothetical protein BM274865

cn833 TC7170 PFL1070c endoplasmin homolog precursor, putative BI670681 BM273857
cn7l TC6893 PFLO 105w hypothetical protein BM274046

cn93 TC7763 PF11_0460 hypothetical protein BM273313

cnl65 TC7103 PF13_0165 hypothetical protein BI670714 BM273638
cn288 TC7304 PF10_0165 DNA polymerase delta catalytic subunit BM274252

cn685 TC7766 PFI1_0331 t-complex protein |, alpha subunit, putative BM273631

cn717 TC7621 PF10_0115 QF122 antigen BM273917

cn737 TC8144 PFL1395c hypothetical protein BM273513

cn832 TC7423 PFI0460w hypothetical protein BM273947

cn49 TC7047 PF10_0242 hypothetical protein BM274006 BQ597262
cn248 TC7431 PFD0685c chromosome associated protein, putative BI936055 BM274686
cn326 TC7394 PFC0570c hypothetical protein BM273462 BU496460
cn750 TC7788 PF10_0256 hypothetical protein BM273642 BQ452171
cn945 TC7533 PFA0460c tubulin-specific chaperone a, putative BM273558 BQ451292
cn982 TC7573 MAL6P|.48 hypothetical protein, expressed BI814116 BM273303
cn68l TC7652 PFE0845c 60S ribosomal subunit protein L8, putative BM273443 BU495298
cn805 TC7301 MALI3PI.120 splicing factor, putative BI815872 BM274487

aTranscript generated by stackPACK 2.2. b TIGR Tentative Consensus correlated with transcript available at http://www.tigr.org/tdb/tgi/pfgil. ©
Gene can be viewed at http://www.plasmodb.org. 4 EST can be retrieved at http://www.ncbi.nlm.nih.gov. ¢ Gene involved in glycolysis. f Apicoplast-

targeted gene.

Table 5: Distribution of protein expression profiles for Plasmodium falciparum stage-overexpressed genes

Gene category Binary accession? Count
Asexual-overexpressed
With protein expression I, ortt, 1oft, 11ot, 1110,0011, 0101, 0110, 1010, 1100, 0010, 0100 40
Without protein expression 0000, 1001, 0001, 1000 8
Gametocyte-overexpressed
With protein expression I, oltt, 1011, 1101, 0011,0101, 1001, 0001 34
Without protein expression 0000, 1110, 0110, 1010, 1100, 0010, 0100, 1000 87
2 4-digit binary accession for protein expression evidence in sporozoite, merozoite, trophozoite and gametocyte.
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Table 6: Gametocyte-overexpressed Plasmodium falciparum genes with correlated protein expression in two proteomic studies

Gene locus name Description of gene product

PFA0460c tubulin-specific chaperone a, putative
PFDO3 10w sexual stage-specific protein precursor
PFD0685c chromosome associated protein, putative
PFE0845¢ 60S ribosomal subunit protein L8, putative
PF07_0029 heat shock protein 86

PF10_0165 DNA polymerase delta catalytic subunit
PF10_0242 hypothetical protein

PF10_0264 40S ribosomal protein, putative

PF11_0294 ATP-dependent phosphofructokinase, putative
PFI1_0331 t-complex protein |, alpha subunit, putative
PFI1_0525 hypothetical protein

PFLO795c hypothetical protein

PFL1070c endoplasmin homolog precursor, putative
PFL2215w actin

PF14_0359 hypothetical protein, conserved

Protein expression binary accession 2
Florens et al. [20]° Lasonder et al. [21]¢

000l oll
0011 I
olol 010
orri 11
(NN Il
orri 010
ol Il
orri 11
0001 orl
[l 1
1001 010
0001 orll
(NN Il
(N 1
orri I

a Evidence of expression: 0, no evidence; |, with evidence. b 4-digit binary accession for protein expression evidence in sporozoite, merozoite,
trophozoite and gametocyte. © 3-digit binary accession for protein evidence in trophozoite/schizont, gametocyte and gametes.

data were available were checked for correlation of func-
tional annotation and their EST count retrieved. As shown
in Table 7, the EST counts were variable across the gene
family consistent with microarray-based studies [42-44].
There was EST evidence for expression of PFB0345c
(SERA4), PFB0340c (SERA5) and PFB0335¢ (SERAG), the
three central genes that were demonstrated to be essential
for asexual stage growth [42]. The GenBank accession
numbers of a representative EST from these genes are
BI936220, BI815392 and BQG633262 respectively.
PFB0340c showed the highest EST count and microarray
intensity values during asexual development of the para-
site. Furthermore, multiple contigs mapped to this gene,
which may represent alternative transcripts.

Out of the 17 transcripts (four asexual and 13 gametocyte)
associated with genes targeted to the apicoplast, only two
genes: MAL13P1.281 and PFE0145w have similarities to
known genes (glutamate-tRNA ligase and 50S ribosomal
subunit protein 128). There was evidence of protein
expression in at least one asexual stage for two
(PF07_0087, PF14_0543) of the four asexual-overex-
pressed genes (Table 3). Six gametocyte-overexpressed
genes showed evidence for expression in the sporozoite
stage while only PF11_0525 showed evidence in the spo-
rozoite and gametocyte stages. PF11_0525 has predicted
protein motifs that indicate its likely function. The
domains are IQ (calmodulin-binding motif, Pfam ID:
PF00612) and LysM (lysin motif, Pfam ID: PF01476),
which is a general peptidoglycan-binding module. A list
of apicoplast-targeted genes with stage-overexpressed
transcripts is presented in additional file 4.

Discussion

An integrative approach was used to determine genes
associated with transcripts differentially expressed
between mixed asexual stage and late stage gametocyte
parasites. The publication of the genome sequence of two
malaria parasites presents opportunities for post-genomic
era malaria research including gene discovery and com-
prehensive understanding of gene expression [46]. The
study has revealed (1) possible regulatory mechanisms in
malaria parasites' gametocyte maturation, (2) correlation
between EST and microarray data for a P. falciparum gene
family to present unique EST-derived information, (3)
candidate genes on which computational and experimen-
tal studies can be performed, and (4) the need for more
empirical studies on gene and protein expression in
malaria parasites.

A total of 569 contigs was used to determine stage-overex-
pression. These presents 366 more contigs than described
by Li et al. [13] reflecting inclusion of new mixed asexual
stage ESTs deposited after March 2002. Only 21 of the 24
significantly stage-specific transcripts identified by Li et al.
[13] were among our stage-overexpressed transcripts after
correlation of functional annotation. Both studies dem-
onstrate the asexual-overexpression of the gene for glycer-
aldehyde-3-phosphate dehydrogenase (GAPDH), an
important gene in the glycolytic pathway [47].

Gene and protein expression were observed, as well as
protein domain evidence for specialization or adaptation
of ATP-dependent phosphofructokinase (PF11_0294) for
metabolic coupling of glucose utilization and maturation
of gametocytes in malaria parasites. This enzyme is of
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Table 7: Correlation of EST abundance and microarray intensity associated with SERA gene family

Gene (Locus name) EST count? Comments b Microarray intensity values ¢
Miller et al. [42] Le Roch et al. [43] Bozdech et al. [19] Wau et al. [44]
R T S T S Asyn
SERA8 (PFB0325c) - -+ 353 10.4 39.3 - - 179
SERA7 (PFB0330c)d 7 -+ 160.5 982.1 1298 2238 5475.83 2415
SERA6 (PFB0335¢) © 2 + 200.7 588.6 1012.6 1695.17 4802.83 3428
SERAS (PFB0340c) « f 98 + 1255.4 4623.7 10265.5 13253.67 59511.17 28613
SERA4 (PFB0345c) 4 + 200 496.7 1456.7 3115.17 10053.17 2273
SERA3 (PFB0350c) - + 87.3 341 579.7 - 6319.83 4572
SERA2 (PFB0355¢) - -+ 185.4 219.4 399.1 - - 1401
SERAI (PFB0360c) 2 I+ 125.9 178.1 615.7 - - 376

a-, no ESTs observed. P Comments on gene expression: -/+, low or absent expression; +, expression confirm by RT-PCR and microarray. <R, Rings;
T, Trophozoite; S, Schizont; Asyn, asynchronous culture; -, No expression value reported. 4 EST count of TIGR TC7227. e Central genes in the
SERA locus that could not be disrupted in study [42]. f Gene with multiple transcripts, TC6886 (BI670678) TC6962 (BI814535).

major regulatory importance in Plasmodium and has been
characterised only in Plasmodium berghei [48]. In addition,
it has been proposed as a potential drug target in proto-
zoan parasites [49]. Two genes (PF11_0294, PFI0755c)
annotated as phosphofructokinase are present in the
genome [7]. This is consistent with the fact that many key
enzymes in the glycolytic pathway occur as isoenzymes
[48]. Interestingly, PF11_0294 possesses a gonadotropin-
releasing domain GnRH and laminin N-terminal
(Domain VI) that are thought to regulate germ cell devel-
opment. PFI0755c does not contain these domains.

PF11_0525 is the only apicoplast-targeted gene associated
with a gametocyte-overexpressed transcript that showed
stage-correlated protein expression. The fact that germ cell
biology is conserved in evolution enables us to speculate
on the possible roles of this protein. The calmodulin
(CaM) binding site has been extensively studied in a
sperm autoantigen (Sp17), which is a zona binding pro-
tein and a member of the family of CaM binding proteins
that contain the IQ motif in the CaM binding domain.
This domain has a regulatory role and undergoes proteo-
lytic processing at the initiation of an acrosome reaction
[50]. Some bacterial proteins such as hydrolytic enzymes
contain the general peptidoglycan-binding module
(LysM) and have a role in cell-wall penetration [51].
PF11_0525 does not have evidence of a bipartite peptide
for apicoplast targeting and thus may be targeted via a dif-
ferent mechanism to the organelle or it may no longer
function in the plastid.

The EST counts of the SERA gene family are comparable
with the gene expression levels observed in microarray
experiments. Both technologies agree that expression lev-
els of members are variable as is expression of central
genes during the asexual stage of the parasite. PFB0340c
(SERAS) is the first described member of the family [39]

and is also a malaria vaccine candidate [52]. The EST
counts for PFB0340c observed is consistent with high
gene expression levels in trophozoites and schizonts in
published microarray experiments. Specifically, Miller et
al. [42] and Aoki et al. [52] observed PFB0340c to be sub-
stantially more strongly transcribed than other SERA
genes.

The increasing amount of published and unpublished
data from microarray, SAGE, EST and differential display
on malaria parasites shows that pairwise correlation is
required. Comparison of such datasets obtained from dif-
ferent gene expression technologies can complement less
sensitive technologies, hence adding value to data genera-
tion from these methods. For example, this study provides
identity of ESTs and also potential alternative transcripts
that can be used to further characterize the SERA central
genes. Furthermore, PFB0325c (SERA8) did not have EST
evidence consistent with low or absent expression
observed in the microarray studies. However, there was
evidence of its expression in the sporozoite stage, indicat-
ing the gene may be functional in other stages of the life
cycle as speculated by Miller et al. [42]. Large-scale com-
parative expression analysis of gene families in multiple
malaria parasites is needed to advance the knowledge of
their evolution and their role during intraerythrocytic
development.

The two uncharacterized genes from which we speculate
functional insights, PF11_0294 and PF11_0525, have
putative orthologues in P. yoelii yoelli (PY05918 and
PY06990 respectively) [8] and were also detected in two
independent proteomic analysis as expressed in the
mature gametocyte stage [20,21]. These observations
strengthen the need for further studies on these genes and
the possibility of studies with model malaria parasites. In
general, various categories of candidate genes were pro-
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vided that can be intensively studied as drug targets, anti-
genic targets, epidemiological or clinical markers. Eighty-
seven of the 121 gametocyte-overexpressed genes did not
show evidence of stage-correlated protein expression
while 15 of those with such evidence were corroborated
by the two proteomics studies. These corroborated genes
represent a set of gametocyte-overexpressed genes with
correlated transcription and translation data and thus can-
didates for studies on gametocyte maturation in malaria
parasites. A shortlist of stage-overexpressed genes targeted
to the plastid is presented to facilitate studies to under-
stand the regulation of plastid metabolism in malaria
parasites.

This study has identified the lack of correlation between
gene and protein expression of the asexual-overexpressed
S-antigen, consistent with observations from published
proteome analysis [20]. This observation and those from
the gametocyte-overexpressed transcripts as well as com-
paring outputs from EST clustering efforts demonstrate
that our integrative approach has the utility to compare
outputs of different post-genomic analysis. The analysis
indicates the need for additional empirical studies on
gene and protein expression in malaria parasites. Such
studies could improve current understanding on discrep-
ancies between gene and protein expression profiling data
as well as the detection of proteins with unique character-
istics such as proteolytic processing, post-translational
modification and sub-cellular location.

Conclusions

The value of integrating a variety of datasets to unravel
undiscovered regulation in biological processes during
the gametocyte maturation stages of P. falciparum was
demonstrated. Furthermore, comparative analysis of EST
and microarray data was performed on the SERA gene
family to advance the knowledge of their gene regulation
and additional functional genomics reagents were pre-
sented to facilitate their study. Finally, the integrative
approach was shown as a means to appraise critically the
data quality of the increasing number of post-genomic
datasets from malaria parasites.
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