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Abstract
Background: Remote sensing technology provides detailed spectral and thermal images of the
earth's surface from which surrogate ecological indicators of complex processes can be measured.

Methods: Remote sensing data were overlaid onto georeferenced entomological and human
ecological data randomly sampled during April and May 2001 in the cities of Kisumu (population ≈
320,000) and Malindi (population ≈ 81,000), Kenya. Grid cells of 270 meters × 270 meters were
used to generate spatial sampling units for each city for the collection of entomological and human
ecological field-based data. Multispectral Thermal Imager (MTI) satellite data in the visible spectrum
at five meter resolution were acquired for Kisumu and Malindi during February and March 2001,
respectively. The MTI data were fit and aggregated to the 270 meter × 270 meter grid cells used
in field-based sampling using a geographic information system. The normalized difference vegetation
index (NDVI) was calculated and scaled from MTI data for selected grid cells. Regression analysis
was used to assess associations between NDVI values and entomological and human ecological
variables at the grid cell level.

Results: Multivariate linear regression showed that as household density increased, mean grid cell
NDVI decreased (global F-test = 9.81, df 3,72, P-value = <0.01; adjusted R2 = 0.26). Given household
density, the number of potential anopheline larval habitats per grid cell also increased with
increasing values of mean grid cell NDVI (global F-test = 14.29, df 3,36, P-value = <0.01; adjusted R2

= 0.51).

Conclusions: NDVI values obtained from MTI data were successfully overlaid onto georeferenced
entomological and human ecological data spatially sampled at a scale of 270 meters × 270 meters.
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Results demonstrate that NDVI at such a scale was sufficient to describe variations in
entomological and human ecological parameters across both cities.

Background
At present, roughly half of the world's population lives in
urban environments. Furthermore, it is expected that vir-
tually all the population increases of underdeveloped
regions of the world will be concentrated within small
and medium sized urban areas over the next thirty years
[1]. This high rate of urbanization will undoubtedly have
profound implications for the epidemiology of malaria,
as well as other vector-borne diseases in sub-Saharan
Africa [2-7].

High resolution passive remote sensing systems, such as
the Multispectral Thermal Imager (MTI) satellite, provide
detailed spectral and thermal images of the earth's surface
from which surrogate ecological indicators of complex
processes can be measured [8]. Such remote sensing sys-
tems may, therefore, prove to be useful in assessing eco-
logical changes within vast, highly heterogeneous urban
areas. In many developing countries, the scarcity of
resources, coupled with the need for regular surveillance,
requires the development of novel methods for the collec-
tion and analysis of ecological data.

Since the mid 1980's, there has been a strong interest in
the application of passive remote sensing from satellites
to further our understanding of the epidemiology of vec-
tor-borne diseases, especially malaria [9-16]. The normal-
ized difference vegetation index (NDVI), which expresses
the abundance of actively photosynthesizing vegetation,
or "greenness" [8], has been of particular interest in map-
ping both spatial and temporal relationships between the
environment and malaria incidence [11,12,14]. However,
remote sensing data obtained from satellites up to this
point have primarily been limited to assessing associa-
tions of environmental conditions, such as NDVI, with
attributes of vector-borne diseases within non-urban
areas, and often over spatial scales unsuitable for measur-
ing ecological conditions within heterogeneous and com-
plex environments such as cities. The MTI satellite
provides visible and near infrared data at a spatial resolu-
tion of five meters, and near, medium and thermal infra-
red data at a spatial resolution of 20 meters, which should
prove sufficient for assessing ecological variations within
urban environments. Furthermore, MTI data at such spa-
tial scales can be easily coupled with georeferenced field-
based data, thus enabling it to be used as a proxy for com-
munity level conditions that may be too expensive or
logistically difficult to collect in areas with limited surveil-
lance or research resources.

A method of overlaying NDVI values, derived from MTI
data, on to georeferenced entomological and human
household ecological data randomly sampled at a spatial
scale of 270 meters × 270 meters within the cities of Kis-
umu and Malindi, Kenya are described within this paper.
Additionally, an attempt is made to demonstrate and val-
idate the utility of this methodology by testing the
hypothesis that NDVI derived from MTI data is sufficient
to describe variation in entomological and human ecolog-
ical parameters at such a scale within these urban
environments.

Methods
Study sites
The study sites of Kisumu and Malindi in Kenya have been
described in detail elsewhere [7,17]. Briefly, Kisumu is
Kenya's third largest city with a population of approxi-
mately 320,000. The city is located on Lake Victoria
within Nyanza Province, 10 km south of the equator,
approximately 1,100 meters above sea level (Figure 1).
Mean daily temperatures range from 18° to 30°C, while
the average annual rainfall typically varies between 1,100
and 1,300 millimeters. Kisumu town is comprised of res-
idential, commercial, and industrial areas, with undevel-
oped land and vegetation both within and around the
urban sub-locations. Most roads within Kisumu are paved
with covered engineered drainage systems lining both
sides of the streets, although some roads and paths, both
within and around the city, consist of dirt. Seventy-five
percent of the urban population has access to piped water
[18], although water vendors are also common. Malaria
transmission within outlying rural areas of Kisumu occurs
throughout the year at intense levels, with Anopheles gam-
biae s.l. and Anopheles funestus the primary malaria vectors
in this area of western Kenya [19-21].

Malindi is Kenya's tenth largest city with a population of
approximately 80,500. The city is located on the shore of
the Indian Ocean in Coast Province (Figure 1). Mean daily
temperatures range from 22° to 30°C, while average
annual rainfall varies between 75 and 1,200 millimeters
along the Kenyan coast. Malindi town is made up of resi-
dential, commercial, and agricultural areas, with tourism
related activities dominating the areas closest to the coast.
The center of town has functional engineered drainage
systems lining both sides of paved roads. Roads along the
coast are also paved. Many roads and paths within the
town are a mixture of sand and dirt. Sixty percent of the
urban population has access to piped water [18], although
shallow garden wells are also used to obtain household
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water. Malaria transmission along the coast of Kenya has
been characterized as low and seasonal, with An. gambiae
s.l. and An. funestus the primary malaria vectors [22].

Sample frame development
The sampling strategy used for the collection of larval site
and household data was developed for an earlier research
project and has been described in detail elsewhere [7].
Briefly, the goal was to generate a sample frame to support
data collection efforts and subsequent hypothesis testing

across multiple disciplines with minimal house and larval
site selection bias. Base maps of major roads and hydrog-
raphy were created using ArcView 3.2® (Environmental
Systems Research Institute, Redlands, CA), a geographic
information system (GIS), on which a series of 270 meter
× 270 meter grid cells were overlaid to generate spatial
sampling units for multi-disciplinary data collection
efforts. Grid cells falling within the urban context were
located in the field, described, and stratified based on the
level of planning and drainage present per grid cell,

Map of Kenya showing Kisumu and MalindiFigure 1
Map of Kenya showing Kisumu and Malindi *
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Randomly selected grid cells in Kisumu (A) and Malindi (B), Kenya, for entomological data collection, by four strata of planning and drainage typologyFigure 2
Randomly selected grid cells in Kisumu (A) and Malindi (B), Kenya, for entomological data collection, by four strata of planning 
and drainage typology *
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Randomly selected grid cells in Kisumu (A) and Malindi (B), Kenya, for household survey data collection, by four strata of plan-ning and drainage typologyFigure 3
Randomly selected grid cells in Kisumu (A) and Malindi (B), Kenya, for household survey data collection, by four strata of plan-
ning and drainage typology *
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defined as: 1) planned, well drained; 2) planned, poorly
drained; 3) unplanned, well drained; and 4) unplanned,
poorly drained. Although a rural stratum in Kisumu and a
peri-urban stratum in Malindi were identified as part of
the original sampling frame, they have been excluded here
because they could not be successfully linked with the
MTI data through unique identifiers. Probability propor-
tional to size sampling, based on the proportion of grid
cells within each stratum, was used to randomly select 20
grid cells in Kisumu and 20 grid cells in Malindi for ento-
mological sampling. These selected grid cells also served
as a guide for household level data collection efforts
described below. The number of grid cells selected for data
collection was a function of time and operational con-
straints. As well, the size of the grid cell (i.e. 270 meters ×
270 meters) was established to coincide with a 9 pixel by
9 pixel (30 meter resolution) LANDSAT Thematic Mapper
(TM) image for an earlier study, and is not the subject of
this demonstration. Figures 2 and 3 illustrate the grid cells
used in this analysis for entomological and household
survey data collection, respectively, by four strata of plan-
ning and drainage typology within Kisumu and Malindi.

Entomological data collection
All accessible water bodies within the grid cells selected
within Kisumu (20 grid cells) and Malindi (20 grid cells)
were located, georeferenced, described and sampled for
mosquito larvae during April and May 2001 (Figure 2), as
described in detail elsewhere [7]. Briefly, all water bodies
were visited to assess the potential for anopheline ovipo-
sitioning and subsequent larval development. All such
identified water bodies were georeferenced with a Trimble
(Sunnyvale, CA) global positioning system (GPS)
receiver. Water bodies were visually inspected for the pres-
ence of larvae. When present, standard sampling tech-
niques were used to collect, preserve and transport
specimens to the laboratory for identification [23]. Water
bodies were also described in terms of surrounding envi-
ronmental and habitat characteristics.

Aquatic habitats were considered potential larval sites if at
least one anopheline mosquito larva was present, or if no
anopheline larvae were present but the water body was
within 20 meters of an active anopheline larval site and
similar with respect to key characteristics of substrate type,
size and water quality and depth. Although the inclusion
criterion for potential larval sites was general, it is recog-
nize that a plethora of factors interact on multiple scales
to effect ovipositioning preferences and subsequent larval
development, and that not all potential larval sites will
produce adult mosquitoes.

Household data collection
In both cities, additional grid cells were randomly selected
for the administration of a household questionnaire dur-

ing April and May 2001, as described in detail elsewhere
[7,17]. The purpose of the survey was to collect and com-
pare data relative to socioeconomic status, mosquito
avoidance behaviours, and knowledge of mosquito life
cycles, between the respective strata of planning and
drainage. Thus, the number of households selected per
strata was not proportional to the actual number of
households, nor grid cells, per strata. In many instances,
households or owners were either absent or unwilling to
be interviewed within specific grid cells. This necessitated
the random selection of adjacent grid cells of the same
stratification typology to reach the target sample size of
100 households per stratum. Households sampled were
randomly selected using the center of the grid cell as a ref-
erence point. In Kisumu, 411 households from 42 grid
cells were chosen within the four respective strata of plan-
ning and drainage. In Malindi, 380 households from 34
grid cells were chosen within the four respective strata of
planning and drainage (Figure 3). Refer to Macintyre et al
(2003) for further description of the household-level soci-
oeconomic data.

In addition to entomological and household data collec-
tion, the total numbers of occupied households contained
within all selected 270 meter × 270 meter grid cells were
obtained. This measure, defined as household density per
grid cell, was intended to serve as a community level sur-
rogate for population density per grid cell. This count also
served as a denominator for the calculation and applica-
tion of sampling weights within each grid cell. Two inde-
pendent observers performed household counts. When
counts yielded different results for the same grid cell, two
additional counts were performed and the average of the
four counts was used.

The institutional review boards of the Kenya Medical
Research Institute (Nairobi, Kenya) and Tulane University
(New Orleans, LA) approved the study protocol and ques-
tionnaire for the household data collection.

Multispectral Thermal Imager data collection
The MTI satellite was used to collect the remotely sensed
data. The MTI satellite programme is sponsored by the
U.S. Departments of Energy and Defense, and coordi-
nated by Sandia National Laboratories, Los Alamos
National Laboratory, and the Savannah River Technolo-
gies Center. While the primary objective of the MTI pro-
gramme involves national defense, a secondary objective
is to collect ground data to validate the algorithms used in
the calibration of the sensors, and to verify the accuracy
and interpretability of the remotely measured data for
research applications.

The MTI satellite is designed to collect, compress, and
store six, 12 × 12 km images per day in 15 spectral bands
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ranging from 0.45 to 10.70 µm (visible blue through long
wave infrared) [24]. The four shortest wavelength bands
(bands A-D) are at five meter spatial resolution, with the
remaining bands are at a spatial resolution of 20 meters.
Bands A-D range from visible blue through very near
infrared, while the remaining bands (E-N) range from
near infrared to long-wave infrared and thermal.

MTI data were acquired for Kisumu and Malindi Districts
for the dates of 20 February, 2001 and 4 March, 2001,
respectively, after obtaining permission to join the MTI
Users Group. MTI data were collected between 0900 and
1000 coordinated universal time at both sites. The target
coordinates were -0.282002 degrees latitude and 34.7700
degrees longitude for Kisumu and -3.31300 degrees lati-
tude and 40.13200 degrees longitude for Malindi. Figures
4 and 5 show infrared color composite images derived
from the MTI data for the areas of Kisumu and Malindi,
respectively. This analysis used bands C and D, collected
at nadir only, to calculate NDVI for association with
selected grid cells to investigate environmental differenti-
ations over areas of human-ecological heterogeneity. The
results of additional analyses using thermal bands, as well
as additional grid cells, will be presented in a series of sub-
sequent papers.

Geoprocessing, calculation of NDVI, and overlaying onto 
field-based data
MTI data subsets, comprising two scenes, one for Kisumu
and one for Malindi, were processed to a level1b_r_coreg
product in hierarchical data format (HDF) prior to being
obtained from Sandia National Laboratories. This level of
processing maps the raw satellite imagery to a grid based
on the WGS84 ellipsoid. The HDF data sets were con-
verted to ERDAS Imagine format files for use with
ArcView®. ArcView 3.3® was used to view the data subsets.
Bands A-D were visually inspected for clarity, variability
and ultimate usefulness for this demonstration. The MTI
data were then georeferenced to the Universal Transverse
Mercator (UTM) coordinate system and cross-referenced
with five control points from existing LANDSAT TM data,
which were already projected to UTM. The MTI data were
georeferenced to five meter spatial resolution using a
'nearest neighbor' resampling setting. Once GPS based
data became available from the fieldwork in Kisumu and
Malindi, a projection was performed, which converted the
GPS based data from the geographic latitude and longi-
tude coordinate system to the UTM coordinate system, to
correspond with the MTI data subsets. False easting and
false northing settings were applied to improve the regis-
tration of the respective data sets.

The Image Analysis extension of ArcView 3.3® was used to
perform NDVI calculations of the ERDAS Imagine format-
ted files. NDVI was calculated as (Band D - B and C) /

(Band D + Band C). The MTI bands D and C correspond
to the infrared and red wavelengths, respectively. The MTI
band wavelengths ranged from 0.62–0.68 µm for the red
and 0.76–0.86 µm for the infrared. The NDVI calculation
results in an ERDAS Imagine floating-point format file,
with NDVI values ranging from -1 to 1. In order to overlay
these data on the existing base maps and selected grid
cells, the MTI data were added to the ArcView® project file
for further processing and viewing. The cartographic infor-
mation for the two base maps was stored as separate shape
files within the ArcView® project file, and overlaid with the
MTI data as a layer for each city.

The different modules within the ArcView® software can
use and display the ERDAS Imagine format files in differ-
ent ways. As well, the Imagine format files are not always
accessible to all modules of the ArcView® software and its
extensions. Thus the decision was made to convert the
Imagine format files to Arc/Info GRID files and recalculate
the NDVI values using the following calculation in
ArcView Spatial Analyst: NDVI = (([Band D] - [Band C]) /
([Band D] + [Band C]).Float). This produced an Arc/Info
GRID format file with a floating-point data range of -1 to
1. Randomly selected locations from both file formats
were compared to ensure correct calculation of NDVI in
Spatial Analyst. The validation was performed by identify-
ing and recording X,Y coordinates from the Imagine for-
mat data images, recording the NDVI values at these
locations, and then pointing to the corresponding
locations in the Arc/Info GRID format file and comparing
the values. All such readings were identical. This process is
useful for calculation validation as well as for verifying
floating-point values. A cross-tabulation was performed
in Spatial Analyst, using the "summarize by zone" func-
tion, to evaluate the randomly selected grid cells with
entomological and household data.

As a result of this process, a database was created for each
city with the mean, minimum, maximum, and standard
deviations for NDVI data aggregated to the 270 meter ×
270 meter grid cell level. The mean NDVI value of all
points within each selected 270 meter × 270 meter grid
cell was used in this analysis. Adding all NDVI pixel values
within the respective grid cell, and dividing that number
by the total number of pixels falling within the grid cell,
was the process used to calculate the mean NDVI value per
grid cell. The NDVI datasets for Kisumu and Malindi were
then merged with the entomological and household data-
sets using unique identifiers for each selected grid cell. To
aid with interpretation, NDVI values were then scaled to a
range of 0 to 200 as follows: scale NDVI = 100(NDVI + 1).
Although it is recognized that in aggregating the MTI data
up to the 270 meter × 270 meter grid cell level important
information may have been lost, this was necessary
because entomological and household level data were
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(page number not for citation purposes)



Malaria Journal 2003, 2 http://www.malariajournal.com/content/2/1/44
Infrared color composite derived from the MTI data for the area of Kisumu, KenyaFigure 4
Infrared color composite derived from the MTI data for the area of Kisumu, Kenya *
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Infrared color composite derived from the MTI data for the area of Malindi, KenyaFigure 5
Infrared color composite derived from the MTI data for the area of Malindi, Kenya *
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Mean values of NDVI for selected grid cells in Kisumu (A) and Malindi (B), Kenya, by four strata of planning and drainage typologyFigure 6
Mean values of NDVI for selected grid cells in Kisumu (A) and Malindi (B), Kenya, by four strata of planning and drainage typol-
ogy *
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collected at this scale. Figure 6 illustrates the distribution
of the resultant mean scaled NDVI values for each ran-
domly selected grid cell within Kisumu and Malindi. The
values are categorized based on the overall range observed
for each city, and both entomological and household sur-
veyed grid cells are included.

Images were taken with a digital camera at points within
Kisumu and Malindi during field-based data collection.
Latitude and longitude were also recorded at these points
using GPS. Six of these images, coupled with their respec-
tive GPS coordinates, were used to assist with the interpre-
tation of NDVI values at five meter resolution within
selected grid cells.

Data management and statistical analysis
ScienceOrganizer, a common internet-based repository
designed by the U.S. National Aeronautic and Space
Administration to enhance information storage, organiza-
tion, and access between research team members at differ-
ent locations, was used to upload, store and access the
field-based data. SAS 8.01 (SAS Inst, North Carolina) was
used for all data cleaning, management and statistical
analyses.

To validate the method of overlaying MTI data onto
georeferenced field-based data described within this
paper, relationships between mean grid cell NDVI and
field-based data relating to entomological and human
activity were investigated. Data analysis was performed on
a finite number of entomological and household varia-
bles that were expected to correlate in a specific direction
with NDVI in order to demonstrate the validity of the
method described within this paper. Please note that it is
not the intension of this paper to assess the relationships
between NDVI and field-based data for the purpose of
developing predictive or explanatory models in them-
selves, but rather to validate that NDVI derived from MTI
data are adequate to describe urban environment such as
these at the grid cell level. A two-sided P-value of <0.05
was considered statistically significant.

To ensure a probability sampling design with respect to
the number of grid cells per strata of planning and drain-
age, sampling weights were assigned to all grid cell level
data (NDVI, number of potential anopheline larval sites
and household density per grid cell). Sampling weights
were calculated for each grid cell based on its probability
of selection as follows: grid cell weight = 1 / (number grid
cells selected within strata x / total number grid cells in
strata x). Such weights were used in generating all descrip-
tive statistics and subsequent statistical analyses at the grid
cell level.

As stated, the selection of households was not propor-
tional to the number of grid cells per strata of planning
and drainage, nor the number of households per grid cell.
To restore a probability sampling design, sampling
weights were assigned to the household level data as fol-
lows: household level weight = 1 / ([number grid cells
selected within strata x / total number grid cells in strata x]
* [number of households selected within grid y / number
of households within grid y]). Such weights were used in
all subsequent statistical analyses at the household level.

Spearman's correlation coefficients were calculated to test
the association between mean grid cell NDVI and the four
respective strata of planning and drainage, within Kisumu
and Malindi. Using weighted data, Pearson's correlation
coefficients were also calculated to test the associations
between mean grid cell NDVI and the number of potential
anopheline larval habitats per grid cell, and household
density per grid cell, within Kisumu and Malindi.

Multivariate linear regression was used to further investi-
gate the potential association between mean grid cell
NDVI and household density and the number of potential
anopheline larval habitats per grid cell, while controlling
for potential confounders. Such grid cell level data for Kis-
umu and Malindi were combined in order to investigate if
such relationships were homogeneous across study sites,
as well as to increase statistical power. As it was hypothe-
sized that NDVI should increase with decreasing house-
hold density, a regression model was established with
mean grid cell NDVI as the dependent variable and house-
hold density as the predictor variable of interest. The
potential confounding effects of study site and planned
versus unplanned drainage strata were controlled for in
the model. As it was further hypothesized that the abun-
dance of potential anopheline larval habitats should
increase with increasing NDVI, a regression model was
established with the number of potential anopheline lar-
val habitats per grid cell as the dependent variable and
mean grid cell NDVI as the predictor variable of interest.
As it has been shown previously that grid cell household
density is significantly associated with the number of
potential anopheline larval habitats per grid cell within
these two cities [7], the potential confounding effect of
household density was controlled for in this model.

Multivariate logistic regression was also performed to
investigate the relationship between mean grid cell NDVI
(dichotomized as high or low) and the presence or
absence of cultivated agricultural fields surrounding a
house. As it was hypothesized that the odds of there being
cultivated agricultural fields about a house should
increase if mean grid cell NDVI was high, a logistic regres-
sion model was established with the presence/absence of
cultivated agricultural fields surrounding a house as the
Page 11 of 17
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dependent variable and grid cell NDVI as the predictor
variable of interest. The potential confounding effects of
planned versus unplanned drainage strata, study site and
low versus high household wealth were adjusted for in
this model. As there was no significant interaction
between study site and grid cell NDVI, data for Kisumu
and Malindi were combined for this analysis. As this
model included data at both the household and commu-
nity levels, standard errors were empirically estimated
using GEE (generalized estimation equation) methods.

Results
Results from the validation exercise suggest that the MTI
data at a spatial resolution of five meters can accurately
describe the level of "greenness" in the area. Figure 7 illus-
trates the digital images and corresponding NDVI values
for three sites in Kisumu and three sites in Malindi. The
high NDVI value detected for images A and C are
expected, as both sites are in residential areas with high
levels of vegetation. However, the NDVI value detected for
image F is unexpected. The site was a swimming pool,
constructed with concrete and tile. It is possible that the
satellite imager was measuring vegetation in the sur-
rounding area, as this site was found along the shoreline
area with an abundance of ornamental vegetation both
within and around neighboring hotel compounds. As
well, the level of error associated with the registration
process and Trimble GPS collected data points may be
such that the true site is 0 to 15 meters from the swimming
pool. Sensor saturation could also be responsible for this
anomalously high value. Images B and E are both void of
vegetation with high levels of metal and concrete, respec-
tively, hence the low values. Site D illustrates the value
when water is present with little or no vegetation around
the site. In general, these values, with the exception of the
swimming pool site, are within the expected range of
NDVI values for the respective site characteristics.

Values for NDVI obtained from the MTI satellite were suc-
cessfully aggregated and overlaid onto georeferenced
field-based data for all selected 270 meter × 270 meter
grid cells within Kisumu and Malindi. Mean grid cell
NDVI values ranged from a low of 80.4 to a high of 168.3
across all sampled grid cells in both study sites (Mean
NDVI = 122.7, standard deviation = 18.1). The mean
NDVI was 121.3 within Kisumu and 128.0 within Malindi
across sampled grid cells (Table 1). In both cities, areas
that were unplanned but well drained had the lowest
mean NDVI values. While unplanned poorly drained
areas had the highest mean NDVI value in Kisumu
(123.1), planned well drained areas had the highest mean
NDVI value in Malindi (141.9), among sampled grid cells.
There were no significant correlations between mean
NDVI and the respective strata within Kisumu (n = 4,

Spearman r = 0.20, P-value = 0.80) or Malindi (n = 4,
Spearman r = -0.80, P-value = 0.20).

A univariate analysis showed mean grid cell NDVI and
household density to be significantly correlated in a neg-
ative direction within both Kisumu (Pearson r = -0.555, P-
value = <0.01) and Malindi (Pearson r = -0.453, P-value =
0.01) (Table 2). Further analysis with a multivariate linear
regression model confirmed this relationship, as house-
hold density was found to be a significant factor affecting
mean grid cell NDVI in an inverse manner, after control-
ling for strata and study site (Table 3). This relationship
did not differ by study sites, as there was no significant
interaction between study site and household density
(Partial F = 0.127 df 1,71, P-value > 0.10). This model was
significant (global F-test = 9.81, df 3,72, P-value = <0.01)
and explained approximately 26% of the variation in
mean NDVI values across sampled grid cells.

Without controlling for confounders, there was no signif-
icant correlation between mean grid cell NDVI and the
number of potential anopheline larval sites per grid cell
within Kisumu (Pearson r = 0.267, P-value = 0.26) or
Malindi (Pearson r = -0.319, P-value = 0.17) (Table 2).
However, subsequent analysis with multivariate linear
regression showed mean grid cell NDVI to be a significant
factor affecting the abundance of potential anopheline
larval habitats across grid cells in a positive direction, after
controlling for household density (Table 4). This relation-
ship was consistent across both study sites (Partial F-test
with addition of study site*NDVI: F = 0.133 df 1,34, P-
value > 0.10). This model was highly significant (global F-
test = 14.29, df 3,36, P-value = <0.01), explaining over half
(51%) of the variation in the number of potential
anopheline larval habitats across sampled grid cells. Mean
grid cell NDVI was responsible for 9% (0.044) of the total
adjusted R2 of 0.51.

Multivariate logistic regression showed that the odds of
there being cultivated agricultural fields around a house
increased significantly for those located within grid cells
with high NDVI, as compared to grid cells with low NDVI,
after adjusting for planning and drainage, study site and
household wealth (n = 76, OR = 2.0, P-value = 0.05).

Discussion
NDVI values obtained from MTI data were successfully
overlaid onto georeferenced field-based entomological
and human household ecological data at a spatial scale of
270 meters × 270 meters within the cities of Kisumu and
Malindi, Kenya. These results demonstrate that mean grid
cell NDVI at such a scale was sufficient to describe varia-
tions in specific entomological and human ecological
parameters across both urban environments. Such rela-
tionships were statistically significant, and most
Page 12 of 17
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Digital images illustrating NDVI values for specific sites in Kisumu and Malindi, KenyaFigure 7
Digital images illustrating NDVI values for specific sites in Kisumu and Malindi, Kenya. *
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Table 1: Variance in mean NDVI by planning and drainage typology within Kisumu and Malindi, Kenya.

Grids (n) Mean NDVI† Standard deviation

Drainage typology
Kisumu*

Planned, well drained 10 121.3 21.48
Planned, poorly drained 12 117.2 4.01
Unplanned, well drained 10 111.0 11.01
Unplanned, poorly drained 10 123.1 28.96
Total 42 121.3 18.12

Malindi*
Planned, well drained 11 141.9 10.67
Planned, poorly drained 10 137.1 16.70
Unplanned, well drained 2 105.5 1.47
Unplanned, poorly drained 11 116.9 13.05
Total 34 128.0 17.19

†Estimated means based on weighted data at grid cell level. *No significant correlation between NDVI and drainage typology for either Kisumu or 
Malindi (Kisumu: n = 4, Spearman r = 0.20, P-value = 0.80; Malindi: n = 4, Spearman r = -0.80, P-value = 0.20)

Table 2: Correlation of mean NDVI against number of potential anopheline larval sites, and household density, per grid cell: Kisumu 
and Malindi, Kenya

Grids (n) Correlation coefficient (r)† P-value

Variable
Kisumu

Household density* 42 -0.555 <0.001
Number of potential anopheline 
larval sites**

20 0.267 0.255

Malindi
Household density* 34 -0.453 0.007
Number of potential anopheline 
larval sites**

20 -0.319 0.171

†Pearson's correlation coefficient used with weighted data at grid cell level. *Collected during household sampling. **Collected during larval data 
collection.

Table 3: Summary statistics of linear regression model relating household density to mean grid cell NDVI: Kisumu and Malindi, Kenya

Coefficient Standard error P-value

Model predicting NDVI (Y)
(Y = β0 + β1X1 + β2X2 + β3X3 + e)

β0: Constant 138.947 4.219 <0.001
X1: Household density -0.073 0.017 <0.001
X2: Planned/unplanned-drainage -1.217 4.126 0.769
X3: Kisumu/Malindi -1.122 3.910 0.775
Adjusted R2: 0.26
Global F test (P-value): 9.81 
(<0.001)
n = 76*

*Collected during household survey, Kisumu and Malindi combined.
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importantly were in the hypothesized directions. Moreo-
ver, such relationships between mean grid cell NDVI and
field-based entomological and human ecological data
were consistent across both Kisumu and Malindi, which
are actually quite different cities with regards to ecology,
culture, history and economics. However, due to small
sample sizes, possible mis-registration of the MTI data,
and information lost as a result of aggregating data, results
from the analyses used to test relationships between grid
cell NDVI and field-based data should be interpreted with
caution.

As hypothesized, it was found that as household density
increased, mean grid cell NDVI – or the amount of
greenness in the area – decreased, after adjusting for study
site and planning and drainage. It was also found that
given household density, the number of potential
anopheline larval habitats increased with increasing val-
ues of mean grid cell NDVI. This suggests that both the
abundance of potential larval sites and the amount of
greenness increased with the propensity of areas within a
grid cell to hold soil moisture, which is due to a multitude
of factors. And lastly, as hypothesized, it was found that
the odds of there being cultivated agricultural fields
around a house doubled if it was located within a grid cell
with high, as opposed to low, mean NDVI. This suggests
that it is possible to use NDVI as a surrogate for commu-
nity level factors such as the presence of urban farming at
a scale of 270 meters × 270 meters within an urban con-
text. This is important as urban farming likely provides
ample aquatic habitats for mosquitoes. Furthermore, it
has been shown that peri-urban areas, which may include
urban areas with substantial amounts of subsistence farm-
ing, have higher levels of annual malaria transmission
compared to strictly urban areas [2]. Thus the use of sur-
rogate ecological variables such as NDVI may allow for

assessment of urban areas in terms of their overall propen-
sity to harbor mosquito populations. Because remote
sensing data is often available at a bi-weekly interval,
changes in the ecological status of an area can also be
determined over time, which is important from a surveil-
lance standpoint within urban environments.

Overall, mean grid cell NDVI did not correlate consist-
ently with levels of planning and drainage. Grid cells
defined as planned and well drained within both Kisumu
and Malindi had relatively high mean NDVI values. This
result was not unexpected as such areas are generally more
affluent and have relatively lower household densities,
thus there is often more planned vegetation such as
planted trees, ornamental plots, and small gardens.
Unplanned well drained areas had the lowest mean values
for NDVI in both Kisumu and Malindi. This result was
also not surprising as such areas were typically situated on
slopes, or hillsides, which did not permit the accumula-
tion of standing water.

The random selection of grid cells, proportional to the
number of grid cells per strata of planning and drainage,
for collecting data on mosquito larvae and potential
anopheline larval habitats proved sufficient to generate a
relatively unbiased sample of such elements. Such a sam-
pling strategy is appropriate because pools of water, which
make up mosquito larval habitats, can be assumed to be
approximately randomly distributed across a given space.
However, the spatial sampling technique used in this
demonstration was not an efficient design for the selec-
tion of households, as it cannot be assumed that
households are randomly distributed across space, espe-
cially with respect to strata of planning and drainage. It
was therefore necessary to assign sampling weights to all
households post hoc based on estimates of the number of

Table 4: Summary statistics for linear regression model relating mean grid cell NDVI to potential anopheline larval habitat abundance: 
Kisumu and Malindi, Kenya

Coefficient Standard error P-value

Model predicting potential 
anopheline larval habitat 
abundance (Z)
(Z = β0 + β1X1 + β2X2 + β3X2 

2 + e)
β0: Constant -3.256 2.150 0.129
X1: NDVI 0.031 0.015 0.047
X2: Household density 0.055 0.012 <0.001
X2

2: Household density squared <-0.001 <0.001 <0.001
Adjusted R2: 0.51
Global F test (P-value): 14.29 
(<0.001)
n = 40*

*Collected during larval sampling, Kisumu and Malindi combined.
Page 15 of 17
(page number not for citation purposes)



Malaria Journal 2003, 2 http://www.malariajournal.com/content/2/1/44
grid cells selected per strata (fist stage), and the number of
households selected from within a chosen grid cell (sec-
ond stage). However, a more appropriate method for
assigning sampling weights to the household-level data
would have been to base the first stage on the number of
households per strata, although such data were not avail-
able at the time of this analysis. For this reason, the house-
hold sample merely approximates a probability sampling
design across the planning and drainage strata, and over
both study sites combined. It is suggested that households
not be spatially sampled, but rather randomly sampled
from an enumeration of households, when available.
When such a sampling frame does not exist, multistage
sampling techniques should be derived from standard
methods [25] pertaining to estimates of the number of
households per desired strata and the number of house-
holds per selected cluster to produce a relatively unbiased
sample. Households selected in this way can then be
georeferenced using GPS in order to be linked with
remotely measured data.

The MTI data used in this research were obtained for a
period of time approximately two to three months prior
to the collection of field-based household data. Such tem-
poral disparities may have confounded our observed rela-
tionships, although the exact nature of such confounding
is unknown. Furthermore, it may be that the utility of
NDVI to adequately describe urban conditions is limited
to periods of time when there is enough precipitation to
yield sufficient variations in greenness across relatively
small areas.

An additional issue worth discussing is the nature of any
spatial autocorrelation that may exist within the data.
Although many continuous surfaces contain a certain
degree of autocorrelation, and near points may be more
alike in value than points at a further distance, no test for
spatial or residual autocorrelation was performed. While
the importance of establishing a level of independence
within the data prior to performing linear regression anal-
ysis is recognized, the unit of analysis at the aggregated
level and the small sample size precluded further investi-
gations into the spatial structure of the data. However, the
purpose of this paper was not to build an exhaustive pre-
dictive model that accounts for the effect of latitude and
longitude on estimated coefficients and observed rela-
tionships; rather the purpose was to describe and demon-
strate the utility of a method for integrating multi-
disciplinary data in a public health capacity.

It is recognized that interactions and feedbacks between
humans and their environments must be accounted for to
successfully describe, and thus understand, urban
ecosystems [26]. These results demonstrate that NDVI at
such a scale may prove sufficient to help describe urban

environments in terms of both natural and human-influ-
enced ecological characteristics that may affect malaria
transmission. According to these findings, urban areas
with higher NDVI may likely have lower household/pop-
ulation densities and have increased potential to harbor
anopheline larval habitats. In many instances within the
context of this research, these areas were of high affluence,
with patches of ornamental vegetation and small gardens
both within and around households. On the other hand,
urban areas with lower NDVI may likely represent areas
with high household/population density, such as slums
constructed mostly of wood and sheet metal, and urban
business districts, such as parking lots and buildings con-
structed mostly of concrete. Such 'brown' areas would
most likely not hold much potential to harbor natural
habitats for anopheline mosquito larvae. However, it is
unknown to what extent Anopheles mosquitoes are adapt-
ing to urban conditions [2]. In the presence of either gen-
otypic or behavioural adaptation of the anopheline to
urban environments, ovipositioning preferences and lar-
val development strategies may change [3,27]. Thus what
holds true in rural environments may not necessarily hold
true in the context of the urban ecosystem, thus areas of
low NDVI may also be important in terms of Anopheles
habitat development.

Remote sensing data such as NDVI represent a vector of
community level variables, and thus hold potential to
supplement data collected from georeferenced household
surveys within urban areas. Additionally, remote sensing
data at similar scales could potentially provide pubic
health officials with valuable information with regards to
urban neighborhoods that may be at increased risk of
malaria outbreaks and would likely benefit from inte-
grated vector control. Although the effectiveness of larval
control has not been demonstrated across a range of
urban environments in Africa, its use as part of an inte-
grated vector management system is warranted in the
presence of heightened malaria parasite transmission.
This demonstration provides some evidence that remote
sensing data have the potential to be used as a valuable
surveillance tool for both public health research groups
and local organizations involved with vector-borne dis-
ease control within urban areas, although to what extent
remotely sensed data can definitively identify areas with
an increased propensity to harbor adult or larval stage
anopheline mosquitoes remains unknown.
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