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Abstract
The classic formulae in malaria epidemiology are reviewed that relate entomological parameters to
malaria transmission, including mosquito survivorship and age-at-infection, the stability index (S),
the human blood index (HBI), proportion of infected mosquitoes, the sporozoite rate, the
entomological inoculation rate (EIR), vectorial capacity (C) and the basic reproductive number (R0).
The synthesis emphasizes the relationships among classic formulae and reformulates a simple
dynamic model for the proportion of infected humans. The classic formulae are related to formulae
from cyclical feeding models, and some inconsistencies are noted. The classic formulae are used to
to illustrate how malaria control reduces malaria transmission and show that increased mosquito
mortality has an effect even larger than was proposed by Macdonald in the 1950's.

Review
Mathematical models have played an important role in
understanding the epidemiology of malaria and other
infectious diseases [1-3]. Models provide concise quanti-
tative descriptions of complicated, non-linear processes,
and a method for relating the process of infection in indi-
viduals to the incidence of infection or disease in a popu-
lation over time. Important insights have come from
dynamic and static analysis of these models [4,5].
Dynamic analysis focuses on changes in the incidence or
prevalence of an infectious disease in a population over
time. Statics involve populations at a steady state.
Dynamic epidemic processes leave a signature in a popu-
lation that can be examined statically, often from static
analyses of age-specific patterns in epidemiological status,
based on an appropriate cross-section of the population at
a point in time – a snapshot of a population, stratified by
age provides information about its historical dynamics
[4,5]. The assumption that a population is at dynamic
equilibrium and has a stationary age distribution is fre-
quently violated in practice, but it provides a useful start-
ing point for more sophisticated analysis. Combining

mathematical modelling with statistical analysis allows
the use of static patterns to understand dynamics; basic
epidemiological parameters can be estimated in the
absence of many years of time series data. The relation-
ship between the statics and dynamics of Plasmodium
infections in female Anopheles mosquitoes has been a
focal point in classic studies of malaria transmission [2].
For mosquitoes, it is easier to measure parity, the repro-
ductive age of the adult mosquito, than the chronological
age of the mosquito, the time since adult emergence [6,7].
Saul et al. reformulated classic models for static age-infec-
tion relationships as cyclical feeding models; i.e. the mod-
els were formulated in terms of parity. They used the
models to analyse mosquito statics, derive a formulae for
the sporozoite rate, and define individual vectorial capac-
ity [8]. Killeen et al. followed a similar line of thinking and
estimated the entomological inoculation rate (EIR) from
studies of mosquito populations [9]. Both models use the
gonotrophic cycle of the mosquito to mark time, but the
underlying assumptions about mosquito populations are
essentially identical to those of Ross and Macdonald [1,2].
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The parallel approaches have led to a proliferation of
formulae.

In this paper, the classic formulae in malaria are reviewed
and re-derived including explicit and simple formulae for
the statics of Plasmodium infection in mosquitoes such as
mosquito survivorship, the human blood index (HBI),
the stability index (S), the proportion of mosquitoes that
are infected (i.e. a mosquito with detectable Plasmodium),
and the proportion of mosquitoes that are infectious (i.e.
the sporozoite rate). These quantities are related to trans-
mission through EIR, vectorial capacity, and the basic
reproductive number, R0. Next, simple dynamic models
are formulated that are slightly different from the classic
formulations; these modified equations are consistent
with the statics of infection. The focus is on the role of
mosquitoes in malaria transmission; for human infec-
tions, the equations use simple assumption of Ross, ignor-
ing super-infection and immunity [1,2,10]. Super-
infection and immunity have been reviewed in greater
depth by others [11,12]. Seven independent quantities
must be estimated for a simple malaria transmission
model. Of these, five can be estimated from mosquito
statics. Finally, the classic malaria models are related
directly to cyclical feeding models.

Statics of mosquito infections
As in the models used to derive the classic formulae in
malaria epidemiology, the following derivations assume
that mosquito populations are homogeneous, ignore
mosquito senescence, and assume that adult mosquito
population size is constant. Moreover, the formulae
assume that mosquitoes bite humans at random and uni-
formly. Also, the formulae assume that an infected mos-
quito never becomes uninfected, and so focus on the
initial infection. These assumptions, which are called the
classic assumptions, are useful approximations or ideali-
zations that form a starting point for more complicated
analysis. The classic assumptions are frequently violated
in real mosquito populations. For example, mosquito
density fluctuates seasonally; emergence and survivorship
may depend on environmental factors, such as rainfall,
temperature and humidity. Adult mosquitoes may
senesce, or there may be intrinsic differences in mortality
rates, called demographic frailty. Mosquitoes bite some
people more than others [13], either due to inherent mos-
quito preferences [14] or proximity to larval habitat [15-
18].

Survivorship & Lifespan
The classic models make simple assumptions about mos-
quito survivorship, a term from demography that is
defined as the proportion of individuals from a cohort
that surviving to a given age, and typically presented as a
survivorship curve. Let g denote the "force of mortality,"

the per-capita daily death rate of a mosquito. The assump-
tion that survivorship is constant over the mosquito
lifespan implies an exponential distribution of survival
times (i.e. a hazard model). The proportion of a cohort of
mosquitoes that survives to age A is

λ(A) = e-gA.  (1)

Thus, the probability that an individual mosquito survives
one day is p = e-g, or equivalently g = - ln p. The median sur-
vival time (i.e. population half-life) is ln 2/g. In general,
the proportion of mosquitoes that dies at age A is gλ (A),
and the average lifespan of a mosquito is:

Put another way, if g is the force of mortality, then 1/g is
the average mosquito lifespan, or the expected waiting
time to death. Mosquito lifespan is one component of the
lifetime transmission potential of an individual mos-
quito; human feeding rate is the other.

Human Feeding, Stability Index & HBI
How many bites on a human will a mosquito take during
its lifetime? Let f denote the mosquito feeding rate; the
interval between blood meals is assumed to be equivalent
to the time interval between successive ovipositions,
denoted 1/f. Further, let Q denote the proportion of bites
that are taken on humans, a parameter that can be esti-
mated from the proportion of mosquitoes that have ever
fed on a human, called the human blood index, HBI. The
human feeding rate, a is the expected number of bites on
humans per mosquito, per day; a = Qf. Since a mosquito
lives 1/g days and bites a human once every a days, a mos-
quito bites humans

times over the course of its lifetime; S is called the "stabil-
ity index" [2,19]. By assumption, the life expectancy of a
mosquito that has already lived 10 days is exactly the
same as a recently emerged mosquito, 1/g days. Thus, S is
also the number of bites given by a mosquito after it has
become infectious. The expected number would be lower
in a population with senescence and higher in a popula-
tion with demographic frailty.

What fraction of mosquitoes of age A have bitten a
human? A mosquito of age A is expected to have given f A
bites, of which a A = fQA are on humans. Following a
cohort of recently emerged mosquitoes over time, the pro-
portion of a surviving mosquitoes of age A that has ever
bitten a human is:

gA A dA gλ ( ) = ( )∞
∫0

1 2/ .

S
a

g
= ( )3
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η(A) = 1-e-aA.  (4)

The proportion of mosquitoes in a population that has
survived to age A and bitten a human is η (A)λ(A), and
HBI is:

Note that the proportion of fed mosquitoes f/(f + g), can
be derived in a similar way, assuming a = f. Thus, the HBI
is a simple function of the mosquito lifespan and the
human feeding rate. It can be understood as a ratio of two
waiting times: the waiting time to either the first human
bite or death 1/(a + g) and the waiting time to the first
human bite among surviving mosquitoes (1/a).

Proportion of Infected Mosquitoes
What is the probability that a mosquito becomes infected
over the course of its lifetime? Infected mosquitoes, in this
case, are those with any of the parasite developmental
stages, e.g. oocysts or sporozoites. Mosquitoes become
infected upon biting an infectious human. Let X denote
the proportion of humans who are infectious, and since
this is a static analysis, X is assumed to remain constant.
Let c denote the transmission efficiency from an infectious
human to an uninfected mosquito; in other words, c is the
probability that an uninfected mosquito becomes
infected after biting an infectious human. Thus, mosqui-
toes become infected at the rate acX. Following a cohort of
recently emerged mosquitoes over time, the proportion of
surviving mosquitoes of age A that have ever become
infected is:

v(A) = 1 - e-acXA.  (6)

The proportion of the original mosquito cohort that is
alive and infected at age A is v(A)λ(A), and the proportion
of infected mosquitoes, Y, is:

Thus the proportion of infected mosquitoes is a ratio of
two waiting times: the waiting time to either death or
infection, 1/(g + acX), and the waiting time to infection
among surviving mosquitoes 1/(acX).

Proportion of Infectious Mosquitoes
What is the probability that a mosquito survives to
become infectious? Infectious is defined as a mosquito
has sporozoites in its salivary glands. Let n denote the
length of the incubation period, from ingestion of game-
tocytes to becoming infectious, called the entomological
incubation period. That is, only mosquitoes that have sur-

vived at least n days could be infectious; the probability of
surviving n days is Pe = e-gn.

What is the probability that a mosquito becomes infec-
tious over the course of its lifetime? The proportion of
mosquitoes of age A that are infectious is:

The proportion of a mosquito cohort that is alive and
infectious at age A is µ (A)λ(A). Thus, the proportion of
mosquitoes that are infectious, Z, (also called the "sporo-
zoite rate"), or, equivalently, the probability that an indi-
vidual mosquito ever becomes infectious, is:

This expression is similar to the one given by Macdonald;
they are identical if c = 1 (see page v, formula (7) in [2]).
Note that it is simply the product of the probabilities of
ever becoming infected and, then, surviving the incuba-
tion period, Z = YPe.

Lifetime Transmission Potential
The lifetime transmission potential of a mosquito is
defined as the expected number of new infections that
would be generated by a newly emerged adult. Let b
denote the transmission efficiency from an infectious
mosquito to an uninfected, susceptible human; in other
words, b is the probability that an uninfected human
becomes infected after being bitten by an infectious mos-
quito. The expected reproductive output of a cohort of
mosquitoes at age A is baµ(A)λ(A). Lifetime transmission
potential, denoted β, is integrated over a mosquito
lifetime:

Thus, lifetime transmission potential is the product of the
probability that a mosquito becomes infected, Y, the
probability that an infected mosquito survives to become
infectious, Pe, transmission efficiency, b, and the stability
index, S.

Lifetime transmission potential for a mosquito is a func-
tion of the proportion of a human population that is
infectious, X, as well as the other parameters. The curve β
(X,...) is concave down, with initial slope

η λ λA A dA A dA
a
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Thus, VX ≈ β (X); the two differ by the factor (1 + acX/g)-1

[= g/(g + acX)]. Note that it is the product of three quanti-
ties: the square of the stability index, S2, the net transmis-
sion efficiency bc, and the probability of surviving the
incubation period Pe. Stability index is squared because
transmission requires at least two bites, one for infection
and one to transmit.

The formula V describes the total contribution to vectorial
capacity of a single mosquito over its lifetime, and it is
used to estimate the critical mosquito density (see below).
Note that Saul, et al. [8] define a closely related formula
called individual vectorial capacity (IC):

IC is defined as the expected number of infectious bites
from a single vector after feeding on an infectious host. It
is the product of three quantities: the probability that a
vector becomes infected by that bite (probability c), the
probability that it survives the incubation period, Pe, and
the stability index, S. Thus, V counts infectious bites that
would result in an infection, while IC counts only infec-
tious bites; V begins counting when an adult mosquito
emerges, while IC begins counting after a mosquito has
bitten an infectious human.

EIR & Vectorial Capacity
EIR depends on the statics of a mosquito population as
well as the density of mosquitoes. By definition, EIR is the
number of infectious bites received per day by a human,
or equivalently, the human biting rate multiplied by the
sporozoite rate. If mosquitoes emerge at the constant rate
ε per human per day, then the equilibrium mosquito den-
sity per human is m = ε/g.

EIR can be written in several equivalent ways. First, EIR =
maZ = εSZ; Z is the sporozoite rate, the proportion of
infectious mosquitoes, and ma = εS is called the human
biting rate (HBR), the number of bites per human per day,
the product of the the density of mosquitoes per human,
and the human feeding rate. (Note that "human feeding
rate" counts the number of bites on a human, per mosqui-
toes, per day, while "human biting rate" counts bites on
humans, per human, per day.) Next, EIR can be rewritten
in terms of the lifetime transmission potential of a mos-
quito – a population of humans would receive the same
number of infectious bites if each emerging mosquito
delivered all of its infectious bites upon emergence and

promptly died [9]; thus EIR = εβ = mgβ. Finally, EIR can be
rewritten in terms of the basic parameters. Thus,

(Again Macdonald gives a nearly identical expression, set-
ting c = 1: see page v, formula (9) in [2]). Note that any
one of these formulae for EIR is correct and could be gen-
erated from an understanding of the underlying entomo-
logical parameters.

Note that EIR, like the sporozoite rate, is a function of the
proportion of humans who are infectious. In contrast,
vectorial capacity, C, describes the transmission potential
of a mosquito population in the absence of Plasmodium
[20]. Vectorial capacity is the expected number of humans
infected per infected human, per day, assuming perfect
transmission efficiency (i.e. b = c = 1):

Many authors use an alternative definition for vectorial
capacity, cC, the number of infectious bites that originate
from all the bites on a single infected human in a day [21].
Note that vectorial capacity is not a function of the sporo-
zoite rate, or of the proportion of humans who are infec-
tious, X. Thus, vectorial capacity is independent of X while
EIR is dependent on X. In other words EIR does not pro-
vide an independent estimate of the proportion of
humans who are infected (the "parasite rate") because its
calculation requires information about the proportion of
humans who are infectious. EIR gives an estimate at a sin-
gle point in time of the waiting time to the next infectious
bite. Note that EIR and vectorial capacity are closely
related, since EIR can be regarded as a function of X, and:

Moreover,

That is, vectorial capacity (multiplied by the transmission
efficiency c) gives the slope of the relationship between
EIR and the prevalence of infection in humans when
malaria is virtually absent: cCX ≈ EIR when X is small; the
approximation cCX is always larger than EIR by the factor
(1 + acX/g)-1. Finally, note that the "force of infection" is
bEIR; some infectious bites fail to produce an infection.
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Thus, EIR is only proportional to the rate that new
infections occur. Thus, bEIR is the inverse of the expected
waiting time to infection for uninfected individuals, or in
a population not at steady state, the best estimate at a
point in time.

Note that vectorial capacity can be rewritten as the prod-
uct of the scaled mosquito emergence rate, the stability
index squared, and the probability of surviving the infec-
tious period:

C = εS2Pe.  (17)

Note the parallels between formulae summarizing ento-
mological aspects of transmission. For example, εV = bcC
and εβ = bEIR. The formulae V and β describe transmis-
sion rates per mosquito over a lifetime, while cC and EIR
describe the number of infectious bites per human. Also,
VX ≈ β and bcCX ≈ bEIR. Thus, V and bcC measure trans-
mission when X ≈ 0 while β and EIR describe transmission
(statically) as a function of X.

Dynamics & control
Having described the statics of mosquito populations and
defined the parameters (see Table 1) an equation for the
population dynamics of malaria infection in mosquito
populations is the following:

 = acX (e-gn - Z) - gZ.  (18)

This equation ignores the time lag introduced by incuba-
tion (parasite development from ingested gametocytes to
salivary-gland sporozoites) but incorporates mosquito
mortality during this period. Uninfected mosquitoes
become infected at the rate acX, but only the portion that
would survive the infectious period, e-gn, become infec-
tious. This model differs slightly from others (see Appen-
dix 1). The equation gives a correct formulation for R0,
and the proportion of infectious mosquitoes is correct; at

equilibrium (setting  = 0, and solving for Z) Eq. 8 is
recaptured.

The dynamical model is completed using the classic
assumptions about the epidemiology of malaria in
humans. Let r denote the recovery rate for humans; this is
equivalent to assuming that humans remain infectious for
1/r days after initially becoming infectious, regardless of
super-infection and the effects of acquired immunity [10-
12,22]. The change in the proportion of infectious
humans is described by:

 = mabZ(1-X)-rX  (19)

This equation ignores the time lag necessary for parasite
development from inoculated sporozoites to circulating
gametocytes, and human mortality that would occur dur-
ing this period.

Mosquitoes play a critical role in the life cycle of Plasmo-
dium, but mosquito populations have a relatively rapid
turnover. For example, the incubation period in mosqui-
toes is ignored (1–2 weeks); so is the longer delay in
humans (2–3 weeks). Mosquitoes complete a generation
during the delay in humans, and, as a consequence, the
proportion of mosquitoes that are infectious changes rap-
idly in response to changes in the proportion of humans
that are infectious. Thus, ignoring the time lags, the
expression for EIR can be substituted into Eq. 13, to derive
a single equation for the dynamics of the proportion of
humans that are infectious:

This equation de-emphasizes mosquitoes, per se, by reduc-
ing their role to a single function describing transmission.
A simpler equation can be derived using the approxima-
tion: bEIR ≈ bcCX:

 = bcCX(l-X)-rX  (21)

A similar equation, omitting b, was discussed by Dye and
Williams [21]. The equation gives a biased estimate for the
proportion of humans at equilibrium who are infectious,

Table 1: The classic parameters. A minimal set of parameters for simple malaria models, following notation commonly used by 
malariologists. The main exception is mosquito lifespan 1/g; the more common alternative is to replace mosquito lifespan with the daily 
mosquito survival probability, g = -inp.

m Ratio of mosquitoes to humans
a Human feeding rate (# bites on a human, per mosquito, per day)
1/g Average mosquito life-span, (days)
n Incubation period (days)
c Transmission efficiency: infected human to mosquito
b Transmission efficiency: infected mosquito to human
1/r Human infectious period (days)

Z

Z

X

X
ma bce

g acX
X X rX

gn
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X
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since bcCX overestimates bEIR by the factor (1 + acX/g)-1.
The bias introduced by using vectorial capacity must be
weighed against the added mathematical simplicity of the
model. In line with the premise that "all models are
wrong, but some are useful," [23] the choice of equation
20, 21, or some other model should depend on how the
model is to be used.

In short, the role of mosquitoes in transmitting human
malaria can be reduced to a simple functional relation-
ship describing transmission intensity, with parameters
that can be estimated from studying the statics of mos-
quito populations.

Threshold Criteria
The basic reproductive number, R0, provides a threshold
criterion. Conceptually, R0 was defined as the expected
number of infected humans per infected human, or the
number of infected mosquitoes per infected mosquito.
The basic reproductive number, R0 is derived from the
coupled

Eqs. (18,19):

(using the "next generation" matrix, this expression is
called (R0)2, see [24,25].) Note that R0 computed from
either Eq. 20 or Eq. 21 is identical to 22. This formula dif-
fers from more traditional expressions for R0 by including
the transmission-efficiency parameter c. For example,
Macdonald derives what is otherwise the same expression
(his expression for z0 is identical if c = 1: page viii, formula
(21) in [2]); his formula is widely used (e.g. see [26]).

The threshold can be expressed in various ways that are
entomologically and epidemiologically meaningful. Since
the basic number is relevant exactly when malaria is
absent (i.e. X ≈ 0) thresholds can also be expressed in
terms of the basic reproductive number, vectorial capac-
ity, or the transmission potential of an individual
mosquito:

R0 = bcC/r = εV/r = mgV/r > 1.  (23)

Rearranging, the threshold can be rewritten as bcC >r;
malaria can invade if people can become infected faster
than they can recover. How many mosquitoes must be
present to sustain an epidemic? The answer is given in
terms of scaled emergence, ε >r/V or scaled mosquito den-
sity, m >r/(gV). Macdonald called this the critical density
of mosquitoes ([2]).

Proportion of Infected Humans
The equations can be used to derive the static relation-
ships for the proportion of infected humans. Using equa-
tion 20, the prevalence of infection in humans at

equilibrium, denoted , can be written as a function of
EIR, C, or R0:

The shape of these curves is illustrated in Figure 2. Note
that each of these curves is concave down (i.e. the second
derivative is negative, and the curve would shed water like

an umbrella not hold it like a cup) and asymptotes at 
= 1 for high EIR (or C or R0). The relationship between
vectorial capacity or the basic reproductive number is

more complicated:  = 0 unless bC >r or R0 > 1. When the
force of infection exactly balances the rate of recovery
(bEIR = r), exactly half of the human population is
infected. In other contexts, this point is called a half-satu-
ration constant, and it determines the shape of the curve.

Malaria Control
The classic formulae provide quantitative insights into the
entomological aspects of malaria transmission relevant to
malaria control. The most critical insights come directly
from the formula for R0, that is rewritten using scaled
mosquito emergence:

Reductions in mosquito emergence, from ε to , or in the

duration of the human infectious period, from 1/r to 1/ ,
have linearly proportional effects on transmission. That is,

if the change is expressed relative to the baseline, θ = ε/
or φ = /r, R0 is reduced by the factor θ or φ (e.g θ = 2
would imply that mosquito emergence had been cut in

half). Reductions in the human feeding rate from a to 

have quadratic effects: if ψ = a/ , R0 is reduced by the fac-
tor ψ2.

Increases in mosquito mortality from a baseline value of g

to a post-control value of  have three effects. First, mos-

quito density is reduced to from ε/g to ε/ , a factor of g/

 (Macdonald ignored this effect [2]). Second, the prob-
ability of surviving the incubation period is reduced from

e-gn to , a factor of . Third, the number of

bites per infectious mosquito is reduced from a/g to a/ ,
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an additional factor of g/ . Thus, if mortality is increased

from the baseline value by a factor ζ = g/ , R0 is reduced

by the total factor egn(ζ-1)/ζ2. The longer the incubation
period, the larger the effect. If the incubation period is
roughly equal to the average mosquito lifespan (i.e. gn ≈
1), and adult mortality is doubled, the reduction in R0 is
22e, a factor of about 11; tripling adult mortality would
reduce R0 by a factor 32e2 ≈ 67! Single control measures
often affect more than one aspect of malaria transmission,
as does integrated malaria control. The important point,
long understood but often forgotten, is that the benefits
are multiplicative. For example, a net reduction of 50% in
mosquito emergence (θ = 2) combined with a doubling in
adult mortality (ζ ≈ 2, again assuming gn ≈ 1) reduces R0

by a factor of θζ2e ≈ 22. A more ambitious programme
that doubled adult mortality, ζ ≈ 2, reduced emergence by
90%, θ ≈ 10, delayed biting by 25%, ψ = 4/3, and reduced
the human infectious period by 90% through mass drug
administration, φ = 10, would reduce R0 by a factor of
φθψ2ζ2e ≈ 1, 932. If such results could be achieved glo-
bally, malaria would be eradicated.

Vectorial capacity is far removed from the costs and bene-
fits of actual control programmes, but the analysis sug-
gests that mortality of adult mosquitoes is particularly
sensitive to control. Also, since the benefits are multiplica-
tive, integrated malaria control may be the most effective
means of control over the long-run.

Parameter estimation
Malaria surveillance requires seven parameters for the
simplest models of malaria transmission (see Table 1).
Assuming that human population density is well-charac-
terized, it is necessary to know the density of mosquitoes,
the human feeding rate (a), the average mosquito lifespan
(1/g), the length of the incubation period (n), the trans-
mission efficiencies (b and c), and the average human
infectious period (1/r). Many of these parameters are dif-
ficult to estimate directly, but indirect parameter estimates
can often be calculated from estimates of independent
quantities that are measured directly. For example, mos-
quito lifespan in a constant population can be estimated
in several ways [6,19,27]. Once mosquito lifespan has
been estimated, human feeding rate can be calculated
from an estimate of the human blood index (Eq. 5). Once
g and a are known, cX can be estimated from the propor-
tion of mosquitoes that are infected (Eq. 7). Next, the

Classic relationships between EIR or R0 and the proportion of humans with parasitemiaFigure 2
Classic relationships between EIR or R0 and the proportion of humans with parasitemia. The relationship between 

EIR and the proportion of infectious humans, , is plotted to illustrate the shape of the curve, assuming a human infectious 
period of 100 days (r = 0.01) and transmission efficiency to humans of 50% (b = 0.5). At this rate, 50% of the human population 

is infectious with a yearly EIR of 7.3 infectious bites. The relationship between R0 and the proportion of infectious humans, , 
is also plotted assuming a human feeding rate of 3 human bites every ten days (a = 0.3), a transmission efficiency to mosquitoes 

of 50% (c = 0.5), and an average mosquito lifespan of about 10 days (g = 0.1). Note that  = 0 unless R0 > 1.
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incubation period (n) can be calculated from an estimate
of the sporozoite rate (Eq. 8; also see page xvi, formula 69
in [2]). Transmission efficiencies are difficult to estimate
independently, but an estimate of the proportion of
humans with circulating gametocytes, X, would provide
an independent estimate of c. Some of these parameters
may be relatively constant for vector species; were this
true, those values would need to be estimated just once,
reducing the effective number of parameters to be esti-
mated thereafter.

Other shortcuts may exist. Depending on the purpose of a
study, for instance, it may be sufficient to estimate cX
without knowing c [8]. The "gold standard" method for
estimating EIR involves estimating two quantities directly,
the human landing rate (approximately equal to the
human biting rate, ma) and the sporozoite rate (Z), but in
this case the extrapolation of such estimates to other
places or times may be of limited utility.

An alternative is detailed study of mosquito populations.
In practice, it is more difficult to measure the chronologi-
cal age of a mosquito than its parity, the number of ovipo-
sitions it has completed [6,7]. An explicit method for
relating transmission parameters to mosquito statics in
cyclical feeding models is given by Saul et al. [8]. Thus,
cyclical feeding models have been formulated in terms of
the reproductive age of the mosquito [8,9].

Parameter values from cyclical feeding models have a one-
to-one mapping onto parameters for models formulated
in continuous time, assuming a mosquito of chronologi-
cal age A has reproductive age τ = A/f. In particular, Pf = e-

g/f is the probability a mosquito survives exactly one feed-
ing cycle. Thus, cyclical feeding models and the classic
models can be compared directly by rescaling time and
plotting λ(τ) and µ(τ) for τ = 0,1, 2, 3,... (see Figure 1 and
Appendix 2). The chronological age of a mosquito with
parity τ depends on time required to find hosts and suc-
cessfully feed as well as the time required to find oviposi-
tion sites and successfully oviposit. Thus, cyclical feeding
models and the classic models are both approximations of
a more complicated reality.

Conclusions
Classic formulae for the entomological inoculation rate,
basic reproductive number R0, vectorial capacity, and
prevalence of infection in humans (the proportion of
humans who are infected, or parasite rate) are usually
based on the same simplifying assumptions, whether they
are formulated as cyclical feeding models or as dynamical
equations. The classic assumptions and corresponding
models provide a starting point for quantifying malaria
transmission and for relating static and dynamic aspects
of malaria infection in humans and mosquitoes. They

should be regarded as idealizations, serving a purpose
similar to that of the Hardy-Weinberg equations in popu-
lation genetics. The underlying epidemiology of malaria
is, of course, more complicated.

The logic of modelling is a priori, from putative cause to
effect; the formulae would be correct provided the under-
lying assumptions were reasonably good approximations
to reality and the parameters could be estimated without
introducing too much bias [28]. Discrepancies in the
actual relationship between EIR (or R0 or vectorial
capacity) and the prevalence of infection in humans could
be due to sampling error, measurement error, variability
in mosquito populations, human immunity, super-infec-
tion, heterogeneity in human or mosquito populations,
or something else. Discrepancies are not reasons to reject
mathematical models; if it is important to have some
quantitative understanding of malaria transmission,
mathematical models are necessary. Instead, discrepan-
cies between model predictions and reality point out
shortcomings in the theory; some of the assumptions are
unrealistic for a particular population at a particular time,
but which ones? Model building and model selection
integrated with field studies will produce models with the
appropriate level of complexity.

Which important factors have been omitted from malaria
models that must be included? The models of Ross and
Macdonald have not performed well in places where
malaria is endemic [22]. Ross-Macdonald models may
perform well for analyzing thresholds, but these models
assume that human biting is evenly distributed. In reality,
mosquitoes bite some humans more than others because
they are more attractive [14], or live close to larval habitat
[17,18] which has a surprisingly large impact on the basic
reproductive number [13,29]. Mosquito survivorship,
adult emergence rate, feeding rate, and parasite sporogony
may vary with temperature, humidity and rainfall, gener-
ating wide fluctuations in the density of mosquitoes, pro-
portion of infectious mosquitoes, and EIR. Mosquito
populations may senesce or be subject to demographic
frailty. The problems of estimating survivorship in a
changing population with frailty, senescence, and migra-
tion may be intractable. These problems with parameter
estimation are still more complicated when several vector
species contribute to malaria transmission in an area.

Understanding malaria control through R0 or vectorial
capacity provides important qualitative insights into
quantitative phenomena. The analysis suggests that the
benefits of killing adult mosquitoes are
disproportionately high (even higher than suggested by
Macdonald [2]). Integrated control and control measures
with multiple effects, such as insecticide-impregnated
bed-nets that delay biting and increase adult mortality,
Page 8 of 14
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Mosquito survivorship and age-at-infectionFigure 1
Mosquito survivorship and age-at-infection. Using parameter values from Killeen, et al., (1999), mosquito survivorship 
λ(A) is plotted from Equation 1 (squares), the proportion of surviving mosquitoes that are infectious, µ(A) from Equation 2 
(diamonds), and the proportion of the original cohort that is alive and infectious λ(A)µ(A) ((triangles) note the units are given 
on a separate axis). The corresponding values from a cyclical feeding model are plotted, assuming that a mosquito with parity τ 
has chronological age A/f. The discrepancies between this algorithm and the one used by Killeen, et al. are explained in Appen-
dix 2.
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may be particularly effective since the benefits are multi-
plicative. On the other hand, there may be practical limits
on increasing mosquito mortality, and benefits may not
increase linearly with expenditures. In other words, while
the enormous potential benefits of increased adult mor-
tality argue that insecticide-impregnated bed-nets and
residual indoor spraying should always be considered,
there may be constraints. Indeed, the global DDT-based
campaign failed to eradicate malaria due, in part, to the
evolution of insecticide resistance and avoidance. Since
adult mosquitoes fly long distances but larval habitat is
fixed, larval control might be more effective in relative
terms; the relative benefits would vary with the larval ecol-
ogy of the vectors [30]. Furthermore, optimal allocation
in integrated malaria control may require a strategy that
changes allocations over time. Environmental engineer-
ing approaches to larval control may require high initial
investments but relatively low-cost maintenance, for
example; long-term reductions in adult emergence multi-
ply any subsequent benefits of other measures.

The classic formulae for the stability index, R0, C, and EIR
were instrumental in shaping and guiding the DDT-based
campaigns to eradicate malaria. Although global eradica-
tion failed, in many places the programmes succeeded in
substantially reducing mortality and morbidity by reduc-
ing transmission. Current malaria control programmes do
not explicitly aim to eradicate malaria or even reduce
transmission, per se, but these formulae can provide a
sound basis for understanding the transmission effects of
current control measures, such as insecticide treated bed-
nets and anti-malarial drugs. On the other hand, critical
issues for current malaria control policy revolve around
the relationship between transmission intensity and
human infection, morbidity and immunity [31]. Trans-
mission models may not provide the insights necessary to
manage disease, especially when most people receive
many infectious bites per day [22]. For disease-focused
management programmes such as Roll-Back Malaria, new
mathematical models relating transmission, immunity
and superinfection to disease are needed [32].

Before measuring any aspect of malaria, it is important to
decide why malaria is being measured. Malaria control
may require data to estimate relative reductions in mos-
quito mortality, emergence, or human biting. In such
cases, it is more important to have several consistent esti-
mates of epidemiological parameters. For example, light-
trap data to monitor mosquito density at the same place
every week would be much more useful for understanding
malaria epidemiology than would point estimates of EIR
from human landing catches made once a year, even if the
"gold standard" provides a more accurate estimate of
human biting rate.

Mathematical models should never be confused with
truth. They are useful approximations. The classic formu-
lae in malaria epidemiology are a starting point. Reality is
always more complicated, and so malaria epidemiology
will always involve some approximation, and parameter
estimation will always involve some degree of error and
bias. Approximation, error, and bias do not, by them-
selves, invalidate the utility of an estimate as long as the
scientist understands the nature of the problems. The
question for malaria epidemiology is not whether the
classic formulae are wrong, but what to do next. The
answer should depend on the goals of local malaria
control.

Appendix 1
The equation for the proportion of infectious mosquitoes
provided by Anderson and May (compare with formula
14.3 in [4]) ignores the incubation period:

In their equation  is presented as "the proportion of
bites by susceptible mosquitoes on infected people that
produce a patent infection." This is interpreted to mean

that  is the product of probability that a mosquito sur-
vives the incubation period, e-gn, and the transmission effi-

ciency c. Substituting  = ce-gn:

 = acXe-gn (1-Z) - gZ.  (27)

This equation would lead to a formula for R0 consistent
with Eq. 22. However, solving for Z at equilibrium in Eq.
27 gives:

This is not consistent with Eq. 8 (or formula 14.1a from
[4]); thus, the statics are not consistent with the assump-
tions. The difference between Eq. 27 and Eq. 18 is the dif-
ference between e-gn(1 - Z) and (e-gn - Z). The former asserts
that noninfectious mosquitoes, (1 - Z), become infectious
at the rate acXe-gn, the latter that mosquitoes become
infected at the rate acX, but only those who would survive
the latent period, e-gn, ever become infectious. Eq. 18 is
consistent with the other assumptions in the model. The
two are equal if and only if the probability of surviving the
incubation period, e-gn = 1.

Appendix 2
There are two differences between the lines and symbols
in Fig. 3. The first difference involves the definition and
use of δ. The second issue involves the formula for the
proportion of infectious mosquitoes.

Z acX Z gZ= −( ) − ( )1 26

c

c

c

Z

Z
acXe

acXe g

gn

gn
=

+
( )

−

− .
28
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Killeen, et al [9] define δ as the number of feeding cycles
that would elapse before an infected mosquito becomes
infectious. The mosquito would transmit on the subse-
quent bite. This would suggest that δ should always be the
next largest integer (often the ceiling function). Killeen et
al. always use the next smallest integer (often called the
floor function). For example, if δ = 3.4, an infected mos-
quito would be infectious on the fourth subsequent bite,
but Killeen et al. use the third bite. Which way is correct?
Like the classic models, cyclical feeding models are also
simple, deterministic approximations to much more com-
plicated processes. Mosquitoes may feed at different rates,
so the time to infection would be described by a distribu-
tion. Fig. 1 was generated using the average. One curve
was produced using the smaller integer value of δ and a
second curve using the larger integer. Next, the non-inte-
ger part of δ was used to weight the two curves. For exam-
ple, for δ = 3.4, the upper curve was generated using δ = 3
and a lower curve using δ = 4, then 40% of the upper value
was added to 60% of the lower value.

Killeen et al. [9] give a formula for the proportion of mos-
quitoes that are infectious, Si after surviving to a given
feeding cycle, i. In their notation, k is the probability of
infection per bite on an infectious human; thus k = cX. The
proportion of blood meals on humans is Q. In their
model, Si = kQ(i - δ), where δ is the number of feeding
cycles that must elapse between becoming infected and
becoming infectious. This formula is, at best, an approxi-
mation for short-lived mosquitoes when kQ is small; that
is, it describes the proportion of infected mosquitoes as a
linear function of the number of feeding cycles, and so
encompasses the nonsensical possibility that more than
100% of mosquitoes can be infectious (see Fig. 3). Their
formula for EIR (from Eq. 13 in Killeen, et al. [9]) is kLE/
Nh, where:

where E is the daily emergence rate of adult mosquitoes
and Nh is human population density. The formula was

Revisiting KadunaFigure 3
Revisiting Kaduna. The statics for a cohort of mosquitoes are plotted using parameter values from Kaduna and the algo-
rithm described by Killeen, et al., with δ rounded to the next lowest integer (using + for the proportion of a cohort that sur-
vives and the downward pointing triangles for the proportion of an original cohort that is alive and infectious). Also plotted are 
the lower values where δ was rounded to the next highest integer (using – or an upward pointing triangle). Killeen et al. (1999) 
use a linear approximation for the proportion of infectious mosquitoes; the approximation is bad in some circumstances. In 
this case, it predicts that > 100% of mosquitoes are infected, after about 50 days. For comparison, the age-specific survivorship 
and the probability infection for Kaduna are replotted, as in Figure 1 (lines).
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Table 2: Formulas from classic and cyclical feeding models. A comparison of classic formulae with those from cyclical feeding models 
[8]. In the third column, a simple alternative is given using a term defined in an earlier row. For direct comparison, the formula fQ is 
used instead of a. Also, ε denotes the number of adult mosquitoes that emerge per human per day, and X denotes the proportion of 
infectious humans. Other parameters are described in Table 1. The emergence rate ε may differ from the number that are feeding for 
the first time on a human per day, N, used by Saul, et al., depending on the behavior of nulliparous mosquitoes [8,27]. All these formulae 
are given for a random sample of mosquitoes; sampling methods may take a biased sample of mosquitoes at various stages in the 
gonotrophic cycle.

Classic Model Cyclical Feeding Model Alternative

1/f 1 Length of one feeding cycle
A τ ≈ A/f Chronological age

e-g/f = p1/f Pf Probability of surviving feeding cycle
1/g Lifespan (days)

1-Pf Proportion of parous mosquitoes

Human Blood Index (HBI)

Y Proportion of Infected Mosquitoes

e-gn Pe Probability of surviving incubation period

Z = Y Pe Sporozoite Rate

S Stability Index

mfQ εQ/(1-Pf) εS Human Biting Rate (HBR)
SZ Lifetime Transmission Potential (β)

εβ Entomological Inoculation Rate (EIR)

εS2Pe Vectorial Capacity (C)

bcS2Pe Vectorial Capacity, per Mosquito (V)

cSPe Individual Vectorial Capacity (IC)
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rewritten, factoring (Pf)δ and changing the index to j = i -
δ, then taking the infinite sum:

Note that (Pf)δ= Pe. This formula does not match the one
given by Saul, et al. [8]. An exact formula for the propor-
tion that are infectious after i feeding cycles is:

Si = 1 - (1 - kQ)i-δ  (31)

That is, to remain uninfected after i - δ feeding cycles, a
mosquito must have failed to become infected by each
one of the i - δ preceding bites. After δ feeding cycles have
passed, the mosquito would be infectious. The exact for-
mula is given by Saul, et al. (Table 2, [8]).

Authors' contributions
The authors contributed equally to this draft.

Acknowledgments
We thank Wendy Prudhomme and Jonathan Dushoff for their comments.

References
1. Ross R: The prevention of malaria London: John Murray; 1911. 
2. Macdonald G: The Epidemiology and Control of Malaria London: Oxford

University Press; 1957. 
3. McKenzie FE: Why model malaria? Parasitol Today 2000, 16:511-6.
4. Anderson RM, May RM: Infectious Diseases of Humans Oxford: Oxford

University Press; 1991. 
5. Bailey NTJ: The Biomathematics of Malaria Oxford University Press;

1982. 
6. Gillies MG, Wilkes TJ: A study of the age composition of popu-

lationas of Anopheles gambiae and An. funestus in North East
Tanzania. Bull Ent Res 1965, 56:237-262.

7. Lines JD, Wilkes TJ, Lyimo EO: Malaria Infectiousness Measured
by Age-Specific Sporozoite Rates in Anopheles gambiae
Human in Tanzania. Parasitology 1991, 102:167-177.

8. Saul AJ, Graves PM, Kay BH: A cyclical feeding model for patho-
gen transmission and its application to determine vectorial
capacity from vector infection rates. J Appl Ecol 1990,
27:123-133.

9. Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier
JC: A simplified model for predicting malaria entomologic
inoculation rates based on entomologic and parasitologic

parameters relevant to control. Am J Trop Med Hyg 2000,
62:535-544.

10. Fine PEM: Superinfection – A Problem in Formulating a
Problem. Bureau of Hygiene and Tropical Diseases 1975, 72:475-488.

11. Aron JL, May RM: The population dynamics of malaria. In Popu-
lation Dynamics and Infectious Disease Edited by: Anderson RM. Chap-
man and Hall; 1982:139-179. 

12. Dietz K: Mathematical models for transmission and control of
malaria. In Principles and Practice of Malariology Edited by: Wernsdor-
fer W, McGregor I. Edinburgh: Churchill Livingston, Inc;
1988:1091-1133. 

13. Dye C, Hasibeder G: Population dynamics of mosquito-borne
disease: effects of flies which bite some people more fre-
quently than others. Trans Roy Soc Trop Med Hyg 1986, 80:69-77.

14. Takken W, Knols BGJ: Odor-mediated behavior of Afrotropical
malaria mosquitoes. Ann Rev Entomol 1999, 44:131-157.

15. Smith T, Charlwood JD, Takken W, Tanner M, Spiegelhalter DJ: Map-
ping the densities of malaria vectors within a single village.
Acta Trop 1995, 59:1-18.

16. Hii JL, Smith T, Mai A, Mellor S, Lewis D, Alexander N, Alpers MP:
Spatial and temporal variation in abundance of Anopheles
(Diptera:Culicidae) in a malaria endemic area in Papua New
Guinea. J Med Entomol 1997, 34:193-205.

17. Staedke SG, Nottingham EW, Cox J, Kamya MR, Rosenthal PJ, Dorsey
G: Short report: proximity to mosquito breeding sites as a
risk factor for clinical malaria episodes in an urban cohort of
Ugandan children. Am J Trop Med Hyg 2003, 69:244-246.

18. van der Hoek W, Konradsen F, Amerasinghe PH, Perera D, Piyaratne
MK, Amerasinghe FP: Towards a risk map of malaria for Sri
Lanka: the importance of house location relative to vector
breeding sites. Int J Epidemiol 2003, 32:280-285.

19. Davidson G: Estimation of the survival of Anopheline mosqui-
toes in nature. Nature 1954, 174:792-793.

20. Garrett-Jones C: Prognosis for interruption of malaria trans-
mission through assessment of the mosquito's vectorial
capacity. Nature 1964, 204:1173-1175.

21. Dye C, Williams BG: Non-Linearities in the Dynamics of Indi-
rectly-Transmitted Infections (or, Does having a Vector
make a Difference?). In Ecology of Infectious Diseases in Natural Pop-
ulations Edited by: Grenfell BT, Dobson AP. Cambridge, UK: Cam-
bridge University Press; 1995:260-279. 

22. Dietz K, Molineaux L, Thomas A: A Malaria Model Tested in the
African Savannah. B World Health Organ 1974, 50:347-357.

23. Box GEP: Robustness in the stratetgy of scientific model
building. In Robustness in Statistics Edited by: Launer RL, Wilkinson
GN. New York: Academic Press; 1979. 

24. Dietz K: The estimation of the basic reproduction number for
infectious diseases. Stat Methods Med Res 1993, 2:23-41.

25. Diekmann O, Heesterbeek JAP, Metz JAJ: On the definition and
the computation of the basic reproduction ratio R0 in models
for infectious diseases in heterogeneous populations. J Math
Biol 1990, 28:365-382.

26. Snow RW, Gilles HM: The epidemiology of malaria. In Essential
Malariology 4th edition. Edited by: Warrell DA, Gilles HM. London:
Arnold; 2002:85-106. 

27. Mutero CM, Birley MH: The effect of pre-gravid development
on the estimation of mosquito survival rates. J Appl Ent 1989,
107:96-101.

m

bcC/r Basic Reproductive Number, R0

Table 2: Formulas from classic and cyclical feeding models. A comparison of classic formulae with those from cyclical feeding models 
[8]. In the third column, a simple alternative is given using a term defined in an earlier row. For direct comparison, the formula fQ is 
used instead of a. Also, ε denotes the number of adult mosquitoes that emerge per human per day, and X denotes the proportion of 
infectious humans. Other parameters are described in Table 1. The emergence rate ε may differ from the number that are feeding for 
the first time on a human per day, N, used by Saul, et al., depending on the behavior of nulliparous mosquitoes [8,27]. All these formulae 
are given for a random sample of mosquitoes; sampling methods may take a biased sample of mosquitoes at various stages in the 
gonotrophic cycle. (Continued)

εbcf Q e

g r

gn2 2

2

− εbcQ P

P r

e

f

2

2
1 −( )

L Q P j P Q
P

P
f f

j f

fj

= ( ) ( ) =
( )

−( )
( )

+

=

∞
∑2 2

1

2
1 1

30
δ

δ

.

Page 13 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/S0169-4758(00)01789-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11121847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1852484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1852484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11289661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11289661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11289661
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0035-9203(86)90199-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0035-9203(86)90199-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0035-9203(86)90199-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3727001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1146/annurev.ento.44.1.131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1146/annurev.ento.44.1.131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0001-706X(94)00082-C
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1016/0001-706X(94)00082-C
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7785522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9103763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9103763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9103763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14628938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14628938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14628938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/ije/dyg055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/ije/dyg055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1093/ije/dyg055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12714550
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13214009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=13214009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14268587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14268587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14268587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8261248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8261248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2117040
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2117040


Malaria Journal 2004, 3 http://www.malariajournal.com/content/3/1/13
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

28. Dye C: Epidemiological significance of vector-parasite
interactions. Parasitology 1990, 101:409-415.

29. Dietz K: Models for vector-borne parasitic diseases. Lecture
Notes in Biomathematics 1980, 39:264-277.

30. Killeen GF, Fillinger U, Knols BGJ: Advantages of larval control
for African malaria vectors: Low mobility and behavioural
responsiveness of immature mosquito stages allow high
effective coverage. Malaria J 2002, 1:8.

31. Molineaux L: Malaria and mortality: some epidemiological
considerations. Ann Trop Med Parasit 1997, 91:811-825.

32. Cohen JE: Esitmating the effects of successful malaria control
programmes on mortality. Popul Bull of the United Nations 1988,
25:6-26.
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2092296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2092296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1475-2875-1-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1475-2875-1-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1475-2875-1-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1080/00034989760572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1080/00034989760572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9625938
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Review
	Statics of mosquito infections
	Survivorship & Lifespan
	Human Feeding, Stability Index & HBI
	Proportion of Infected Mosquitoes
	Proportion of Infectious Mosquitoes
	Lifetime Transmission Potential
	EIR & Vectorial Capacity
	Table 1


	Dynamics & control
	Threshold Criteria
	Proportion of Infected Humans
	Malaria Control

	Parameter estimation

	Conclusions
	Appendix 1
	Appendix 2
	Table 2

	Authors' contributions
	Acknowledgments
	References

