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Abstract
Background: Cerebral malaria is a form of human malaria wherein Plasmodium falciparum-infected red blood cells 
adhere to the blood capillaries in the brain, potentially leading to coma and death. Interactions between parasite and 
host proteins are important in understanding the pathogenesis of this deadly form of malaria. It is, therefore, necessary 
to study available protein-protein interactions to identify lesser known interactions that could throw light on key 
events of cerebral malaria.

Methods: Sequestration, haemostasis dysfunction, systemic inflammation and neuronal damage are key processes of 
cerebral malaria. Key events were identified from literature as being crucial to these processes. An integrated 
interactome was created using available experimental and predicted datasets as well as from literature. Interactions 
from this interactome were filtered based on Gene Ontology and tissue-specific annotations, and further analysed for 
relevance to the key events.

Results: PfEMP1 presentation, platelet activation and astrocyte dysfunction were identified as the key events 
influencing the disease. 48896 host-parasite along with other host-parasite, host-host and parasite-parasite protein-
protein interactions obtained from a disease-specific corpus were combined to form an integrated interactome. 
Filtering of the interactome resulted in five host-parasite PPI, six parasite-parasite and two host-host PPI. The analysis of 
these interactions revealed the potential significance of apolipoproteins and temperature/Hsp expression on efficient 
PfEMP1 presentation; role of MSP-1 in platelet activation; effect of parasite proteins in TGF-β regulation and the role of 
albumin in astrocyte dysfunction.

Conclusions: This work links key host-parasite, parasite-parasite and host-host protein-protein interactions to key 
processes of cerebral malaria and generates hypotheses for disease pathogenesis based on a filtered interaction 
dataset. These hypotheses provide novel and significant insights to cerebral malaria.

Background
Malaria remains a scourge in the developing world, with
the number of fatalities due to the disease estimated at
one million every year [1]. Plasmodium falciparum is the
most fatal of the four Plasmodium species that cause
human malaria, accounting for a large proportion of
these deaths [2,3]. Cerebral malaria (CM) is a severe form
of P. falciparum infection, characterized by cerebral com-
plications, such as neuronal damage and coma [3].

Processes such as sequestration, systemic inflamma-
tion, haemostasis dysfunction and neuronal damage
characterize CM [4,5]. Host-parasite protein interactions

are crucial to understanding these processes. For
instance, interactions between the parasite protein
PfEMP1 and human proteins such as CD36 and inter-cel-
lular adhesion molecule (ICAM-1) expressed in endothe-
lial cells (EC) are critical for sequestration [6].
Sequestration is the adhesion of P. falciparum-infected
red blood cells (pRBCs) to the EC. Such interactions are
known to trigger intracellular signaling cascades within
the EC. These affect the expression of key proteins in the
blood-brain barrier (BBB) intercellular tight junctions,
including zona occludens-1, vinculin and occludin, lead-
ing to eventual BBB disruption [6,7].

Protein-protein interactions (PPI) between host and
parasite proteins are thus crucial to studying the disease.
However, current understanding of the molecular pro-
cesses involving the host-parasite PPI is limited and the
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significance of a large number of host-parasite PPI yet to
be determined. This work integrates PPI from a multi-
tude of sources to create an integrated PPI landscape, and
links some of these interactions to key processes and
events of CM. The landscape also includes upstream PPI
involving only parasite proteins as well as downstream
PPI involving only host proteins that are necessary to
understand the triggers and outcomes of these processes
and events, respectively.

Methods
PPI from predicted datasets
A number of recent studies predict host-P. falciparum
PPI [8-11]. PPI datasets were obtained from these studies
and a unified set of host-parasite PPI was created. Since
each dataset uses a different nomenclature system for the
human and parasite proteins, all datasets were trans-
formed to enable comparison and integration using com-
mon gene names from sources such as UniProt [12],
Ensembl [13] and PlasmoDB [14]. For example, Davis et
al [8] use the Ensembl protein ID, Dyer et al [9] the Uni-
Prot entry name, Krishnadev and Srinivasan [10] the
NCBI gi code, and Vignali et al [11] the UniProt gene
names for the human proteins. After this transformation,
the various datasets were compared for overlap, and a
unified host-P. falciparum PPI interactome was created.
Figure 1 depicts the schematic work flow followed to cre-
ate/filter the relevant PPI used in the study.

CM-specific literature corpus
An automated literature retrieval module was developed
using Entrez Programming Utilities [15] to retrieve the
list of full-text articles relevant to P. falciparum. This arti-
cle set was further pruned using the MeSH controlled
vocabulary to obtain only articles relevant to CM. The
resultant set was augmented by articles retrieved from
the Google Scholar database using appropriate CM-spe-
cific query terms.

Crucial review articles from the literature corpus were
used to identify events relevant to the main processes of
CM. Furthermore, host-parasite, host-host and parasite-
parasite PPI reported in literature were also obtained by
analysing this corpus. This was done by first checking for
article-level co-occurrence of protein pairs using a utility
script implemented in Perl. The script automatically
downloads the full-text articles from the respective jour-
nal websites as Portable Document Format (PDF) files
and converts these to text format using the XPDF conver-
sion utility [16]. All parasite and host proteins that occur
in the full-text of each article were identified using dic-
tionary lookup, with PlasmoDB and UniProt/Ensembl
being used to create the P. falciparum and human protein
dictionaries respectively. Only those articles that had at
least one protein pair (host-parasite, host-host or para-

site-parasite) were considered for further analysis. The
PPI obtained from predicted datasets and CM-specific
literature corpus were combined to form the integrated
interactome consisting of host-parasite, host-host and
parasite-parasite PPI.

Pruning the interactome
Gene Ontology (GO) annotations for process, function
and cellular component can be used to filter out false
positives from predicted PPI datasets [17]. Using this
approach, GO cellular component annotations from Plas-
moDB were used to prune the unified PPI interactome.
Interactions involving parasite proteins annotated to be
present on the pRBC/merozoite surface or reported to be
released during schizont rupture [18-20] were only con-
sidered. For the human protein annotations, tissue-spe-
cific annotations from UniProt were used to prune the
interactome. The resultant interactions were further
analysed and filtered based on their relevance to the key
events that influence the processes of CM, as identified
from the key review articles.

Results
PPI from predicted datasets
A comparison of the interactions from the predicted PPI
datasets demonstrated very little overlap between the
various computationally predicted PPI datasets. For
example, there were no common interactions between
the Vignali and Krishnadev datasets while the Krishnadev
and Dyer datasets had only 10 common interactions.
Three common interactions between the Dyer and Lee
datasets and four common interactions between Krish-
nadev and Lee datasets were present. A total of 48,896

Figure 1 Workflow followed to obtain the final PPI interactome.
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host- P. falciparum PPI were obtained by unifying all the
datasets.

CM-specific corpus analysis
Three events were identified as crucial in influencing
sequestration, haemostasis dysfunction, systemic inflam-
mation and neuronal damage, the key processes of CM.
They were: PfEMP1 presentation, platelet activation and
astrocyte dysfunction. Host-P. falciparum, host-host and
parasite-parasite PPI reported in literature were obtained
by analysing this CM-specific literature corpus. 48,896
host-parasite PPI from the various PPI datasets along
with the host-parasite, host-host and parasite-parasite
PPI obtained from the literature analysis were combined
to form an integrated interactome.

After pruning, the final PPI interactome consisted of
five host-parasite PPI, six parasite-parasite and two host-
host PPI. The host-parasite PPI are:

• Parasite protein ETRAMP5 (early transcribed mem-
brane protein 5; PFE1590w) with the human apolipo-
proteins apoA1, apoB and apoE
• Human glycoprotein integrin gpIIIa with the para-
site merozoite surface protein MSP-1 (PFI1475w)
• Interactions between host TGF-β~TGF-β receptors
and certain parasite proteins such as PF11_0188,
PFC0755 etc

The parasite-parasite PPI are:
• Parasite proteins ETRAMP5 (PFE1590w) and
PfHsp40 (PF14_0700). Also, PfHsp40 has a direct
interaction with PfHsp70 (PF08_0054) and an indi-
rect interaction with PfHsp86 (PF07_0029).

The host-host PPI is:
• An interaction between the human serum albumin
(HSA) and TGF-β receptors

Analysis
PfEMP1 presentation
The P. falciparum protein ETRAMP5 is seen to interact
with the human apolipoproteins apoA1, apoB and apoE.
ETRAMP5 is responsible for the junction formation
between the tubulovesicular network (TVN) and the
pRBC [20,21]. ETRAMP5 is known to be critical for effi-
cient PfEMP1 presentation on the pRBC membrane
[20,22]. It is known that both high and low density serum
lipoproteins play a crucial role in efficient PfEMP1 pre-
sentation by mediating lipid transport and thereby assist-
ing PfEMP1 transport from the Maurer's clefts to the
pRBC surface [22,23]. This lipoprotein mediated lipid
transport occurs via specific apolipoproteins [24], and it
has been speculated that parasite proteins might influ-
ence this transport via lipoprotein binding [25]. It is thus
possible that interactions between ETRAMP5 and the
human apolipoproteins apoA1, apoB and apoE might play
a crucial role in lipid transport, thereby influencing effi-
cient PfEMP1 presentation.

ETRAMP5 and the parasite Hsp protein PfHsp40
(PF14_0700) are also seen to interact. PfHsp40 has a
direct interaction with PfHsp70 (PF08_0054) and an indi-
rect interaction with PfHsp86 (PF07_0029). Other para-
site Hsp proteins such as the PfHsp60 precursor, PfHsp70
and PfHsp90 also interact with various host proteins. The
localization of ETRAMP5 to the TVN-pRBC membrane
junction occurs via the chaperone activity of PfHsp70 and
PfHsp86 and the co-chaperone PfHsp40 [26]. Another
multi-chaperone complex consisting of PfHsp60 precur-
sor, PfHsp70 and PfHsp90 traffics the knob-associated-
histidine-rich protein (KAHRP) to the RBC membrane
via the TVN [23,27]. In addition to ETRAMP5, KAHRP is
also critical for efficient PfEMP1 presentation on the
pRBC membrane [22,23,27]. Increased trafficking of
PfEMP1 to the pRBC membrane leading to increased
cytoadherence occurs during high temperature [28]. High
temperature is also known to increase PfHsp expression
and chaperone activity [28,29]. Thus, high temperature
causes an increase in the expression and chaperone activ-
ity of PfHsps causing increased trafficking of KAHRP and
ETRAMP5, leading to increased PfEMP1 presentation on
the pRBC membrane. Figure 2a shows PPI associated
with PfEMP1 presentation and sequestration.
Platelet activation
Glycoprotein integrin gpIIIa is seen to interact with the
merozoite surface protein MSP-1. MSP-1 is initially
expressed as a protein precursor, which undergoes pri-
mary proteolytic processing within the pRBC during late
trophozoite and schizont stages resulting in four frag-
ments. All the remaining fragments, except for the p19
Glycosylphosphatidylinositol (GPI) anchor present on the
pRBC, are shed during schizogony to form a complex in
association with MSP-6 and MSP-7 [30]. Platelets are
known to be activated via membrane glycoprotein integ-
rins such as gpIIb-IIIa [30,31]. It is known that parasite-
derived products released at schizogony can act as trig-
gers for platelet activation via platelet membrane glyco-
proteins followed by TGF-β release [31,32]. It can be
hypothesized that the MSP-1 complex interacts with
gpIIIa in vivo resulting in platelet activation. On the other
hand, platelets can also get activated on contact with
pRBCs [31]. It is possible that the MSP-1 GPI anchor on
the pRBC surface interacts with gpIIIa during platelet-
pRBC contact resulting in platelet activation. Thus, there
are two possible in vivo scenarios for the MSP-1-gpIIIa
interaction to occur.

A set of interactions between TGF-β and parasite pro-
teins as well as those between TGF-β receptors and para-
site proteins are observed. Regulation by parasite factors
is through direct interactions involving TGF-β [33] or
through interactions with platelets resulting in TGF-β
release [32]. Experimental evidence suggests that
PfTRAP (PF13_0201) activates latent TGF-β [33]. This
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activation is harmful during the early stages of the infec-
tion since TGF-β down-regulates the inflammatory
cytokines resulting in reduced parasite clearance. How-
ever, in the later stages of the disease, TGF-β activation
may be protective through the down-regulation of the
systemic inflammation. Hence, the role of TGF-β could
depend on the time of its activation by parasite proteins,
with activation in early stages resulting in increased para-
site clearance time. TGF-β released by activated platelets
transduces signals by binding to TGF-β receptor type I
(TGFBR1) and TGF-β receptor type II (TGFBR2) [34].
TGF-β receptor mediated signaling is crucial in endothe-
lial apoptosis [35]. It is also known that the antagonistic
binding of inhibitory proteins on TGF-β receptors inter-
feres with TGF-β signaling and causes changes in the nor-
mal functioning of TGF-β [36,37]. Though the exact
function of the parasite proteins involved in the PPI is
currently unknown, it is possible that parasite proteins
might interfere in TGF-β receptor mediated signaling.

Figure 2b shows PPI associated with platelet activation
and their probable linkage to haemostasis dysfunction/
systemic inflammation.
Astrocyte dysfunction
An interaction between human serum albumin (HSA)
and TGF-β receptors is also present in the landscape. The
binding of HSA to astrocyte TGFBR1 and TGFBR2 fol-
lowing BBB disruption is associated with seizures in sev-
eral neurological diseases [38,39]. HSA mediated
astrocyte activation has been studied based on the up-
regulation of glial fibrillary acidic protein (GFAP) [40], an
intermediate filament protein that maintains mechanical
strength of the astrocytes. Up-regulation of GFAP affects
potassium and glutamate regulation by astrocytes [38].
Increased potassium and glutamate concentration in the
vicinity of neurons causes neuronal death, leading to sei-
zures caused by a reorganization of neuronal networks in
the brain [40]. Figure 2c links this interaction to astrocyte
dysfunction and neuronal damage.

Figure 2 Combined effects of specific PPI that could contribute to events and processes in CM pathology. a) PfEMP1 presentation: Parasite 
Hsps - KAHRP/ETRAMP interactions during high temperature and the PPI between apolipoproteins and ETRAMP. b) Platelet activation: PPI between 
platelet membrane glycoprotein IIIa (gpIIIa) and merozoite surface proteins MSP1 and MSP8 resulting in TGF-β release. TGF-β released by activated 
platelets is activated by parasite protein PfTRAP. PPI between parasite proteins and TGF-β-TGF-β receptors TGFBR1, TGFBR2 might interfere in the anti-
inflammatory role of TGF-β c) Astrocyte dysfunction: PPI between albumin and TGF-β receptors.
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Discussion
This work aims at integrating host-parasite, host-host
and parasite-parasite PPI from multitude of sources and
using them to study the pathogenesis of CM. Despite a
large corpus of literature on P. falciparum and human PPI
from both experimental and theoretical sources, the in
vivo significance of most of these PPI is not known. Since
each PPI dataset has been derived using different experi-
mental and theoretical methods, the interactions were
initially treated as de-contextualized pairs of protein
associations. GO annotation filters were then applied to
the PPI data, which resulted in a set of host-parasite PPI
that are most likely to influence CM pathogenesis. This
filtering is dependent on the currently available GO
annotations for the various parasite and host proteins,
and as a result important protein interaction pairs could
also get filtered out. The resulting PPI were then mapped
to the key events PfEMP1 presentation, platelet activa-
tion and astrocyte damage resulting in a smaller, focused
PPI set. Several established PPI not directly involved in
these three key events get excluded. For instance, the
interaction between PfEMP1 and CD36, which though
responsible for increased cytoadherence, is filtered out as
this event occurs only after PfEMP1 presentation.

The sequestration of pRBCs to the EC through the sur-
face adhesion receptors [6] is crucial to CM, since this
directly affects BBB structure and function. This process
is known to occur mainly through interactions between
the P. falciparum protein PfEMP1 and human proteins
present on endothelial cells. PfEMP1 presentation is thus
a key event in the sequestration process. Though KAHRP
and ETRAMP are crucial in PfEMP1 presentation, the
effect of temperature on the trafficking of these proteins
by PfHsps is not fully understood. This work links inter-
actions involving a set of PfHsps that might play a crucial
role in the trafficking of ETRAMP and KAHRP to
increased PfEMP1 presentation on the pRBCs. In CM,
the effect of temperature in the trafficking of PfEMP1 to
pRBC surface has been well studied [28]. Although anti-
pyretics have been associated with reduced parasite
clearance [41], the use of antipyretics in CM-afflicted
patients is largely seen as protective [28]. This is attrib-
uted to decreased cytoadherence at lower body tempera-
ture, which assists anti-malarial drugs in clearing ring-
stage parasites before they mature and cytoadhere. Fur-
ther experimental work is necessary to study if this is due
to the effect of antipyretics on the trafficking of ETRAMP
and KAHRP resulting in decreased PfEMP1 presentation.

Activated platelets act as bridges between pRBCs and
endothelial cells, allowing the binding of pRBC to the
endothelium devoid of cytoadherence receptors [31]. The
MSP-1-gpIIIa interaction might play a crucial role in
platelet activation, either via complex formation with
MSP-6/MSP-7 or through contact with pRBCs, thus

influencing systemic inflammation in CM. Antibody
mediated blocking of the activity of gpIIb-IIIa in vitro has
revealed decreased platelet activation [31]. Other studies
also show lowered antibody response to MSP-1/MSP-6/
MSP-7 in CM patients when compared with non-affected
patients [30]. Lowered antibody response to GPI anchor
has also been reported in CM non-survivors when com-
pared to the CM survivors [42]. Hence, the MSP-1-gpIIIa
interaction could indicate a novel mechanism of platelet
activation by MSP-1. Platelet activation is also associated
with tissue factor (TF) expression on the platelet surface
[43]. TF expression leads to amplification of the coagula-
tion cascade resulting in the consumption of coagulation
factors [6]. Platelet activation via MSP-1 and gpIIIa might
thus also play a role in TF expression on the platelet sur-
face causing amplification of the coagulation cascade,
leading to haemostasis dysfunction.

Haemostasis dysfunction during CM culminates in
increased endothelial hemorrhage resulting in leakage of
plasma proteins, proinflammatory cytokines and parasite
factors across the BBB. This influx of foreign substances
activates the microglial cells, resident macrophages of the
brain and spinal cord. Upon activation, they release
proinflammatory cytokines which damage astrocytes and
glial cells that are crucial for BBB maintenance [44]. In
addition to the damage caused by this cytotoxic environ-
ment, it was hypothesized that the interaction between
HSA and the TGF-β receptors TGFBR1 and TGFBR2
could result in astrocyte dysfunction, followed by sei-
zures and neuronal death.

When mapping of the interactome, an interesting
observation was the dual behaviour of TGF-β. On the one
hand, it has a protective effect on the host during the
pathogenesis of CM due to its anti-inflammatory prop-
erty [34]. During the release of TGF-β mediated by para-
site-derived products such as PfTRAP, TGF-β down-
regulates the proinflammatory cytokine TNF and up-reg-
ulates the anti-inflammatory cytokine IL-10 [34]. On the
other hand, activated platelets locally release TGF-β that
synergizes with TNF in creating a proinflammatory con-
dition leading to BBB disruption [33]. Increased activa-
tion of TGF-β during early stages of the disease leads to
reduced parasite clearance time; hence it was hypothe-
sized that parasite proteins might regulate TGF-β activa-
tion thus increasing parasite survival in the host.

Conclusion
This work integrates disparate experimental and pre-
dicted host-parasite, host-host and parasite-parasite PPI
into a combined interactome, filters this based on rele-
vance to CM and positions the PPI around key events and
processes of the disease. It points to the potential signifi-
cance of apolipoproteins and Hsps on efficient PfEMP1
presentation, role of MSP-1 in platelet activation, the role
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of albumin in astrocyte dysfunction and the effect of par-
asite proteins in TGF-β regulation. The linking of these
PPI to the molecular events associated with CM patho-
genesis provides a basis for further experiments to deter-
mine the molecular basis of this fatal disease.
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