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Abstract 

Background  To achieve malaria elimination it is essential to understand the impact of insecticide-treated net (ITNs) 
programmes. Here, the impact of ITN access and use on malaria prevalence in children in Malawi was investigated 
using Malaria Indicator Survey (MIS) data.

Methods  MIS data from 2012, 2014 and 2017 were used to investigate the relationship between malaria prevalence 
in children (6–59 months) and ITN use. Generalized linear modelling (GLM), geostatistical mixed regression modelling 
and non-stationary GLM were undertaken to evaluate trends, spatial patterns and local dynamics, respectively.

Results  Malaria prevalence in Malawi was 27.1% (95% CI 23.1–31.2%) in 2012 and similar in both 2014 (32.1%, 95% CI 
25.5–38.7) and 2017 (23.9%, 95% CI 20.3–27.4%). ITN coverage and use increased during the same time period, with 
household ITN access growing from 19.0% (95% CI 15.6–22.3%) of households with at least 1 ITN for every 2 people 
sleeping in the house the night before to 41.7% (95% CI 39.1–44.4%) and ITN use from 41.1% (95% CI 37.3–44.9%) of 
the population sleeping under an ITN the previous night to 57.4% (95% CI 55.0–59.9%). Both the geostatistical and 
non-stationary GLM regression models showed child malaria prevalence had a negative association with ITN popula‑
tion access and a positive association with ITN use although affected by large uncertainties. The non-stationary GLM 
highlighted the spatital heterogeneity in the relationship between childhood malaria and ITN dynamics across the 
country.

Conclusion  Malaria prevalence in children under five had a negative association with ITN population access and a 
positive association with ITN use, with spatial heterogeneity in these relationships across Malawi. This study presents 
an important modelling approach that allows malaria control programmes to spatially disentangle the impact of 
interventions on malaria cases.
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Background
Malaria is one of the most important causes of morbidity 
and mortality in Malawi. Since 2007, mass distribution of 
insecticide-treated nets (ITNs) to the demographically 
most vulnerable population groups has been a major 
part of Malawi’s vector control efforts. This, in combi-
nation with improved diagnosis and treatment of cases, 
has resulted in a 36% reduction in malaria cases, from 
an estimated 5.6 million cases in 2010 to 3.6 million in 
2016 [1]. Despite this progress, continued investment in 
malaria control has not led to a further decrease in cases 
[1, 2] with an estimated 4.3 million cases still occurring 
in 2020.

The Malawi National Malaria Control Programme 
(NMCP) aimed to reduce malaria incidence by at least 
50% from a 2016 baseline of 386 per 1000 population to 
193 per 1000, and reduce malaria deaths by at least 50% 
from 23 per 100,000 population to 12 per 100,000 popu-
lation by 2022 [3]. To reach these targets, it is necessary 
to understand the impact of current control activities 
and tailor future vector control to local epidemiological 
and entomological dynamics [4] in the context of a fast 
growing population. The Malawian population has grown 
almost 30% during from 2012 to 2022 to 20.4 million 
[5]. To control the malaria vectors, in 2007, the govern-
ment started distributing long-lasting insecticide-treated 
nets (LLINs). It is generally accepted that ITN coverage 
has helped decrease malaria prevalence in Malawi [6–9]. 
However, retrospective studies have also found that a 
13% increase in bed net access from 2012 to 2014 was not 
associated with a reduction in malaria burden in children 
[10]. This was corroborated by a similar study investi-
gating overall trends within the 2012 and 2014 malaria 
indicator survey (MIS) data [11]. Comparison of data 
from 2004 and 2016 also showed that community malaria 
prevalence was not related to ITN use [12]. No personal, 
and limited community, protection from ITNs was found 
in a field study from 2012 [13]. These inconsistent con-
clusions suggest that ITN access and use may have a het-
erogeneous impact on malaria prevalence.

One of the main challenges for malaria elimination is 
the heterogeneity of the current malaria landscape [1, 14, 
15]. It is not well understood why this heterogeneity has 
emerged, although the possible varied efficacy of ITNs 
could be partly responsible. ITNs can impact areas differ-
ently due to different vector population compositions and 
behaviours, climate variation and the presence of resist-
ance [16–18]. Furthermore, gaps may exist between pol-
icy and implementation [19], with human behaviour one 
of the most complex variables involved in malaria trans-
mission. The local population might accept, but not use 
and maintain nets, use nets for other purposes or migrate 
to areas with higher malaria risk [20–22]. Further reasons 

include social factors, such as autonomy in health care 
decisions [23], bed net integrity and insecticide degrada-
tion [24].

The best method for measuring the efficacy of ITNs 
directly is randomized controlled trials, ideally con-
ducted across different parts of a country. No such rand-
omized control trials have been conducted in Malawi due 
to the unethical nature of withholding nets from a pro-
portion of the population. However, an important alter-
native source of information exists in the MIS. A search 
on the National Library of Medicine identifies more then 
2,000 papers that have used MIS data in some capac-
ity (search date 16–02-2022). These routine, large-scale 
household surveys are designed to produce snapshots 
of the malaria situation at national, regional and urban/
rural levels. In Malawi, national MIS were conducted in 
2010, 2012, 2014 and 2017 [25–27]. These MIS, together, 
capture the malaria situation and dynamics throughout 
the country and represent an essential source of informa-
tion for policy development [1]. For example, MIS stud-
ies helped recognize the possible ineffectiveness of ITNs 
[10, 11], which led to the recent addition of pyrethroid-
Piperonyl butoxide (PBO) nets to the vector control pro-
gramme. The latest MIS survey was conducted in Malawi 
in April 2021. Data are currently being analysed and have 
not been released to the public.

Even with the recent addition of PBO and dual active 
ingredient nets to the vector control programme, tradi-
tional permethrin nets will likely remain an important 
part of control efforts in Malawi due to the uncertain 
durability of the next generation bed nets[28], their addi-
tional costs and unknown acceptance by the local popu-
lation. In this study, the spatial relationship between ITN 
access and use, and malaria prevalence in children was 
investigated using MIS data from 2012, 2014 and 2017.

Methods
Country profile
Malawi is a southern African country with an estimated 
population of 18.6 million in 2019 [29]. The country con-
sists of the Northern, Central and Southern regions, fur-
ther divided into 28 districts. Malawi has three seasons, a 
rainy season from November to April, a cool-dry season 
from May to August and a hot-dry season from August 
to November. This sub-tropical climate is favourable for 
transmission of malaria. The main malaria vector, Anoph-
eles funestus, is present throughout the country and 
throughout the year. The population along Lake Malawi 
and in the southern lowland are especially at high risk 
[15], as their environment is also ideal for the second-
ary malaria vectors Anopheles gambiae sensu stricto (s.s.) 
and Anopheles arabiensis [15, 30]. Even though An. funes-
tus and An. gambiae sensu lato (s.l.) were susceptible to 
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all insecticides in 2007, by 2010 pyrethroid resistance was 
found in both species [16, 31]. At present, it is suspected 
that pyrethroid and carbamate resistance is widespread 
across the country [32]. In 2007, the Malawian govern-
ment started the distribution of LLINs. In 2012, 41% of 
the population owned at least one ITN with 29% sleep-
ing under it the preceding night [25]. In the same year, 
the aim of universal bed net coverage (one LLIN per 1.8 
people) was expressed. To achieve this, in 2014, 7 mil-
lion nets were distributed throughout the country, fur-
ther complemented by an additional 8 million in 2016 [1]
[1]. During all distribution campaigns hyperendemic and 
endemic areas were prioritized. To supplement the ITN 
campaigns, ITNs are also routinely distributed through 
the antenatal care service. Sporadic indoor residual spray 
(IRS) campaigns have also been conducted in industrial 
agricultural estates and in several districts [25, 34]. Dur-
ing the mass ITN distribution campaigns IRS districts do 
not receive ITNs. Although IRS use has been related to 
a reduction in parasitaemia in Malawi [35], due to their 
high cost and the spread of insecticide resistance, it was 
scaled back to Nkhotakota district in 2012 and imple-
mented only sporadically until 2018. A timeline of the 
different malaria vector control activities in Malawi can 
be found in Additional file 1.

MIS data
The MIS are designed to provide nationally, regionally 
and urban/rural representative data on 14 core malaria 
indicators during peak malaria transmission, including 
malaria prevalence and malaria control [36]. A differ-
ent combination of households is surveyed each survey 
year using a two-stage stratified cluster design [37]. Field 
teams ask the head of household an array of questions. If 
the target respondent is unavailable, a person aged 15 or 
over living in each household is asked the questions. The 
field team also conduct malaria testing and geo-reference 
the location [38]. Household anonymity is maintained 
by displacing the coordinates randomly between 0 and 
10  km within the second administrative boundary. The 
locations of the household clusters and their urban/rural 
classification are visualized in Additional file 2.

For this study, household-level MIS data from 2012, 
2014 and 2017 were analysed with ‘household’ as the unit 
of analysis. The timing of the MIS in combination with 
the implementation of vector control activities in Malawi 
are tabulated in Additional file 1. A household is defined 
as one person or a group of people living together in a 
housing unit who acknowledge one adult as the head of 
the household [37]. The 2010 MIS was excluded, as it was 
not conducted by the DHS program, not geo-referenced 
and did not include Rapid Diagnostic Test (RDTs) results.

Child malaria prevalence
In the MIS surveys, after verbal consent, children aged 
6-to-59 months were tested for malaria using rapid diag-
nostic tests (RDTs) and microscopy of blood smears 
[38]. The RDT has a sensitivity of 99.5% and specificity 
of 98% for Plasmodium falciparum [39]. A small drop of 
blood from the finger or heel of a child was tested for P. 
falciparum in 2012 and 2014 using the SD Bioline rapid 
diagnostic test (Standard Diagnostic Inc., Korea) and in 
2017 for P. falciparum and other Plasmodium species 
using the SD Bioline Malaria Ag P.f/Pan rapid diagnos-
tic test (Standard Diagnostic Inc., Korea). The children 
who tested positive were offered malaria pharmacologi-
cal treatment according to the current standard proce-
dures for malaria treatment in Malawi [38]. A second 
blood sample was taken from the children for a thick and 
thin blood smear to confirm infection. The slides were 
checked in the laboratory for the presence of Plasmo-
dium parasites by two independent microscopists. Both 
the RDT and blood smear results are shared in the MIS 
report. The NMCP in Malawi uses only the blood smear 
results for malaria prevalence calculations, while the 
RDT results are used for treatment of cases in the field. 
Correspondingly, the focus in this paper was on blood 
smear prevalence results.

Insecticide‑treated nets
The questionnaire respondents are asked to show the 
surveyor all the nets in the household. Surveyors are 
instructed to count and inspect these nets. From this ITN 
data, household ITN ownership (indicator 1: proportion 
of households with at least 1 ITN), household ITN access 
(indicator 2: proportion of households with at least 1 ITN 
for every 2 people sleeping in the house the night before), 
population ITN access (indicator 3: proportion of the pop-
ulation that could potentially sleep under an ITN the previ-
ous night, assuming each net could be used by 1.6 people 
(as suggested by [40])) and ITN use (indicator 4: propor-
tion of the population that slept under an ITN the previous 
night) were calculated as proxies for ITN access and use 
[36]. A detailed description of the calculations is available 
in Additional file 3. These indicators were used to identify 
ownership and behavioural gaps. The ownership gap is the 
gap between household ITN ownership and population 
ITN access [36]. This gap highlights that although nets are 
reaching a large proportion of the population, the number 
of ITNs available in the householdis insufficient to cover 
everyone in the household (assuming one ITN provides 
protection for 1.6 people). The behavioural gap is the gap 
between population ITN access and ITN use [36]. This 
gap identifies if net access is sufficient to cover all people 
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sleeping in the household (assuming one ITN provides pro-
tection for 1.6 people), yet ITNs are not being used.

Statistical analysis
The data were analysed in the R software [41–43]. National 
averages and 95% confidence intervals were calculated for 
each variable in each survey separately using a weighting 
system that adjusts for selection probability differences 
[37]. Paired t-tests were undertaken to compare differences 
in malaria prevalence between RDTs and blood smear 
results. Four different model types were used to investigate 
the relationship between childhood malaria and ITN use in 
Malawi (Fig. 1). Two assumptions were made: (i) popula-
tion ITN access is a good representation of the accessibil-
ity of good quality ITNs for the population in the area; and 
(ii) ITN use the previous night is a good representation of 
the overall use of ITNs by the population throughout the 
malaria transmission seasons due to the large sample size 
of the MIS.

An initial investigation was undertaken using the mul-
tivariate linear regression model (model 1). As the residu-
als were not normally distributed, the multivariate linear 
regression model was extended to a binomial generalized 
linear model (BGLM, model 2). In this model, variable 
selection was based on the Akaike information criterion 
(AIC). The selected predictor covariates consisted of the 
year of survey, urban/rural areas, population ITN access, 
ITN use and the interaction between population ITN 
access and ITN use, with malaria prevalence from blood 
smear used as the outcome variable. Residuals were 
mapped and tested for autocorrelation to check if values 
were independent.

Geostatistical mixed regression modelling
As the BGLM model (model 2) showed autocorrelation in 
the residuals, data were formally tested for spatial depend-
ence in the variance. Spatial dependence was shown to 
be significant [see Additional file 4] and, therefore, spatial 
analysis was undertaken by fitting a Binomial generalized 
geostatistical linear model (BGGLM) [44] to the aggre-
gated malaria prevalence data (model 3):

where α is the intersect; β1 the linear regression param-
eter for the survey year, β2 the parameter for the rural/
urban variable at location i; β3 the parameter for ITN 
population access; β4 the parameter for ITN use; β5 the 
parameter for the interaction between ITN population 
access and ITN use; S(xi) a spatial Gaussian process; xi 
the ith spatial location and Zi the residual extra-binomial 
variation within a sampling location. The Monte Carlo 
maximum likelihood (MCML) estimation was used to fit 
the binomial model. The MCML estimation was repeated 
using the parameter values from the initial MCML to 
improve the MCML estimates [44].

There is a logical relation between the ITN population 
access and ITN use data variables, converging at 0 value. 
Further investigation of these variables indicated weak 
collinearity (variance inflation factor < 5), and adjustment 
in the models was not needed. However, as an interaction 
between both variables is expected, the interaction was 
left in the model.

As is common practice, a mixed model with a geo-
statistical spatial random effects term was adopted. 
This type of mixed model is justified where the resid-
uals from the linear fixed effects term of the regres-
sion model are autocorrelated. The difference between 
urban and rural areas was accounted for by adding it as 
a covariate. To account for differences in data collection 
teams, malaria cycle periods and climate between the 
different survey years, the year was also included as a 
covariate.

Non‑stationary generalized linear model
The BGGLM (model 3) is a global model in that its 
parameters are spatially stationary. To investigate the 
variation of parameters across space, a non-stationary 
GLM was fitted (model 4). This non-stationary method 
of regression considers only a portion of the data around 
the prediction point at a time, and is sometimes referred 
to as ‘local mapping.’ A so-called ‘kernel’ is moved across 
the study area and at each location in a pre-defined grid, 
the regression coefficients are estimated with the GLM 
(model 2) as its base, using the data weighted by the ker-
nel. The size of kernel can be adaptive, to ensure that 
sufficient information is included even in areas where 
data are sparse. In this way, the non-stationary method 
allows the estimated regression parameters to be mapped 
throughout the study area [45]. Specifically, it calculates 
local regression parameters by fitting a regression model 
for malaria prevalence p such that:

log

(

p(xi)

1− p(xi)

)

=α + β1a1(xi)+ β2a2(xi)+ β3a3(xi)

+ β4a4(xi)+ β5a5(xi)+ S(xi)+ Zi

Fig. 1  The four different model types used to investigate the 
relationship between ITN use and childhood malaria in Malawi
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where ( ui,vi) represents the coordinates at location i ; αi 
the intersect at location i;m the number of independ-
ent variables; β(ui,vi) the local regression parameter for 
the k th independent variable at location i ; xk ,i the k th 
covariate; and Zi the error at location i . This expression 
allows the β to vary with the location coordinates ( ui,vi) , 
making the model spatially non-stationary; and allows 
β to be estimated via weighted least squares with the 
weights matrix obtained from a Gaussian kernel, attrib-
uting larger weights to values of predictors from more 
proximate locations. Analysis was undertaken using 
the package ’GWmodel’ [46]. Standard errors were esti-
mated using the bootstrap function, with coefficients re-
estimated 1,000 times at each grid point. The size of the 
kernel is controlled by the bandwidth, identified using 
both the cross-validation and AIC corrected (AICc) 
approach within the package. Collinearity is minimized 
as described by the R package documentation.

Results
Exploratory analysis
The MIS data used for this research consisted of 10,538 
households in 430 different locations collected during 
three different years (Table  1). Malaria prevalence cal-
culated using RDT results was higher than when calcu-
lated using blood smears for 2012 (paired t-test P < 0.001, 
df = 139), 2014 (P = 0.012, df = 139) and 2017 (P < 0.001, 

p(ui ,vi) = αi +

m
∑

k=1

βk(ui, vi)xk ,i + Zi

Table 1  Summary of Malawi MIS data from 2012, 2014 and 2017

Averages and proportions are calculated using the Demographic and Health Surveys weighting scheme [37]. Unsuccessful tests were noted as ‘other’. Unsuccessful 
tests were ‘inconsistent data’, ‘not present’, ‘refused’, ‘sample not found’ or ‘test undetermined’

2012 2014 2017

Survey months March–April May–June April–June

Households 3404 3405 3729

Clusters 140 140 150

Average number of household members in house‑
hold (95% CI)

4.17 (4.07–4.26) 4.12 (3.99–4.25) 4.46 (4.38–4.55)

Malaria prevalence (%)

 RDT 42.5 (37.0–47.9) 36.2 (29.4–43.0) 36.3 (31.7–40.8)

 Blood smear 27.1 (23.1–31.2) 32.1 (25.5–38.7) 23.9 (20.3–27.4)

ITN data

 Total nets 3316 4754 7182

 Total ITNs 2932 4562 6752

Household ownership (%) 55 (51.2–58.9) 70.2 (65.8–74.6) 82.1 (80.0–84.2)

Household access (%) 19 (15.6–22.3) 30.3 (26.8–33.8) 41.7 (39.1–44.4)

Population access (%) 33.1 (29.8–36.4) 47.1 (43.4–50.8) 58.4 (56.2–60.6)

ITN use (%) 41.1 (37.3–44.9) 53.1 (49.3–56.9) 57.4 (55.0–59.9)

Fig. 2  Malaria prevalence and ITN access summary results for the 
household clusters surveyed in 2012, 2014 and 2017. A malaria 
prevalence in children measured using blood smear test in the 
different household clusters. B Population ITN access in the different 
household clusters with the assumption that one ITN provides 
protection for 1.6 people
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df = 149). A comparison of malaria prevalence for both 
RDTs and blood smears on the same children showed 
more than 80% overlap [see Additional file 5].

Although malaria prevalence in the different survey 
years did not differ (Table 1), the number of positive cases 
decreased in central Malawi (Fig. 2). Malaria prevalence 
was lower in urban areas compared to rural areas (both 
RDT and blood smear P < 0.001) [see Additional file 6].

All ITN indicators suggested an increase in ITN access 
and use through time (Table  1). By 2017, household 
ownership had increased from 55 to 82%. Ownership 
was high throughout the country, with most households 
owning at least one ITN (Fig.  2) [see Additional file  7]. 
However, this high household ownership did not trans-
late into similarly high household access. In 2017, only 
42% of households had sufficient ITNs to cover all sleep-
ing people and ITN access for the population was below 
60% for the majority of areas surveyed. Net coverage in 
central Malawi was slightly lower than for the rest of the 
country, with also fewer people sleeping under an ITN 
[see Additional file  7]. There is evidence of an owner-
ship gap, with ITN campaigns reaching most households 
across the country, but not supplying sufficient numbers 
for complete coverage (Fig. 3). There is no evidence of a 
behavioural gap in 2017, with the increase in population 
ITN access from 2012 to 2017 aligned with an increase in 
ITN use.

Bionomial generalized geostatistical linear mixed regression 
modelling
The BGGLM revealed a negative association between 
malaria prevalence and ITN population access in all 
regions in Malawi, with low child malaria prevalence 
occurring in areas with high population access to 
nets. In contrast, malaria prevalence was positively 
associated with sleeping under a net, with high use 
occurring in areas with high child malaria prevalence 

Fig. 3  Scatterplots visualizing the ITN ownership gap and 
behavioural gap in 2012, 2014 and 2017, with colours indicating the 
different regions. The black lines are the trend lines representing 
no gap. A Comparison of household ITN ownership to household 
ITN access to visualize the ITN ownership gap. B Comparison of 
population ITN access to ITN use to visualize the behavioural gap

Table 2  Results of binomial geostatistical mixed regression of blood smear malaria prevalence against selected covariates

Odds ratio (OR) and the 95% confidence intervals (95%CI), calculated from the parameter estimates and the associated standard errors fitted using Monte Carlo 
maximum likelihood estimation

*Indicates significant difference (P < 0.05)
a ITN population access ranged from 0 to 1 proportion of the population having access to ITNs and ITN use ranged from 0 to 1 proportion of people sleeping under a 
net

ITN population 
accessa

ITN usea Rural year 2014 year 2017 Interaction ITN 
population access 
and ITN use

Areas OR P-value OR P-value OR P-value OR P-value OR P-value OR P-value

Malawi 0.01
(0.008–0.06)

 < 0.001* 6.80
(1.38–33.43)

0.018* 3.35
(2.45–4.57)

 < 0.001* 1.34
(1.09–1.65)

 < 0.001* 1.09
(0.84–1.42)

0.504 4.40
(0.37–52.01)

0.239

north 0.02
(0.001–0.14)

 < 0.01* 12.19
(0.32–58.22)

0.035* 1.70
(0.92–3.41)

0.0822 1.79
(1.09–2.93)

0.020* 0.90
0.48–1.69

0.752 3.99
(0.05–21.96)

0.677

central 0.07
(0.012–0.45)

 < 0.001* 6.43
(1.05–39.19)

0.034* 3.67
(2.23–6.04)

 < 0.001* 1.37
(1.12–1.68)

0.0019* 0.97
(0.75–1.25)

0.835 1.38
(0.11–16.70)

0.750

south 0.05
(0.0004–0.68)

    0.002* 3.27
(0.06–75.16)

0.558 4.03
(2.09–7.79)

 < 0.001* 1.67
(0.94–2.97)

0.078 2.07
(0.91–4.72)

0.082 12.57
(0.19–59.21)

0.137
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(Table  2). Both ITN variables showed heterogeneity 
across the different regions, suggesting a heterogene-
ous relationship between child malaria prevalence and 
ITN population access and ITN use. The interaction 
between ITN population access and ITN use was not 
significant.

There was a clear relationship between malaria prev-
alence and the urban/rural variable, with child malaria 
cases three times higher in rural areas than urban 
areas. The same model, run independently for each 
region, indicated that the difference in malaria preva-
lence between urban and rural areas was demonstrated 
mainly in central and southern Malawi, where malaria 
was four times higher in rural areas (Table  2). Child 
malaria prevalence was lower in 2012 than 2014, but 
did not differ between 2012 and 2017.

Non‑stationary spatial generalized linear model
The non-stationary coefficient estimates for both 
ITN population access and ITN use for the three dif-
ferent years were mapped [see Additional file  8]. The 
parameters (i.e., relationship) between child malaria 
prevalence and the indicators exhibit some geographi-
cal variation, although the standard errors are large 
(Table 3). The north of the country shows parameters 
consistently significant compared to the south of the 
country. A temporal difference appears between 2014 
and 2017, with the correlation between child malaria 
prevalence and both indicators reduced in 2017 com-
pared to 2014.

Discussion
This study presents an important, key modelling 
approach that allows malaria control programmes to 
spatially unravel the relationship between child malaria 
prevalence and ITN distribution. The non-stationary 
generalized linear model helped visualize variation in the 
relationship between malaria cases and bed net indica-
tors. Increasing household access to and ownership of 
ITNs resulted in a decrease in malaria cases. However, 
this did not occur homogeneously across the country. 
The ITN coverage and use increased from 2012 to 2017, 
while child malaria prevalence decreased only in some 
areas. The BGGLM regression using MIS survey data 
showed that child malaria prevalence had a negative 
association with ITN population access and a positive 
association with ITN use. However, it is challenging to 
identify cause and effect without temporally linked data. 
The MIS data are currently the best information avail-
able to understand the impact of ITNs on malaria preva-
lence in Malawi. The large variation in odds ratio reflects 
the high uncertainty in the data and the need for further 
localized data that takes into account any potential con-
founder, to spatially disentangle the relationship between 
ITN indicators and malaria prevalence.

A negative association between malaria prevalence 
and ITN population access in all regions of Malawi was 
found. Areas with high population access to nets had 
lower malaria prevalence than areas with low access. This 
corresponds to earlier work in Malawi, where ITN own-
ership was found to be protective against malaria para-
sitaemia in children [7, 47]. The non-stationary spatial 

Table 3  Results of the non-stationary generalized linear model of blood smear malaria prevalence against ITN population access and 
ITN use in the different survey years

Global parameter estimates and the associated standard errors (se) are shown with its range across the country. Additionally, the odds ratio (OR) and the 95% 
confidence intervals are presented

*Indicates significant difference (P < 0.05)

Survey year Global 
β estimate
(se)

Range Global
OR (95%CI)

Range P-value

ITN population 
access

2012 − 0.98
(0.32)

− 1.29 to − 0.35 0.38
(0.20–0.70)

0.28 to 0.70  < 0.01*

2014 − 0.93
(0.24)

− 1.29 to − 0.55 0.39
(0.25–0.63)

0.28 to 0.58  < 0.001*

2017 − 0.37
(0.13)

− 0.47 to − 0.11 0.69
(0.53–0.89)

0.63 to 0.90  < 0.01*

ITN use 2012 0.68
(0.28)

0.25 to 0.88 1.97
(1.14–3.42)

1.28 to 2.41 0.0168 *

2014 0.76
(0.21)

0.56 to 1.22 2.14
(1.42–3.23)

1.75 to 3.39  < 0.001*

2017 0.37
(0.12)

0.03 to 0.45 1.45
(1.14–1.83)

1.03 to 1.57  < 0.01*
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analysis highlighted heterogeneity in the relationship 
with some areas showing no negative association. The 
assumption was made that nets maintained physical 
integrity and bioefficacy of insecticides at least one year 
post-distribution. Yet, the lack of a discernible relation-
ship could indicate that the roll out was slow, new nets 
from the campaigns were not used (still in packaging), 
nets were not used consistently or nets were ineffective. 
The nets are unlikely to be entirely ineffective, as even 
with high insecticide resistance the physical barrier of 
nets and sublethal effect of the insecticides results in a 
negative relationship between malaria prevalence and 
ITNs [47–49]. It is likely that other factors also affected 
prevalence, creating artefacts in the relationship between 
the outcome and predictor. For example, behavioural 
resistance, with mosquitoes biting when people are not 
protected by the nets, could play a role [50, 51]. The qual-
ity of the nets has also not been considered, while studies 
have shown that using a mosquito bed net that is more 
than one year old is a risk factor for malaria in Malawi 
[52]. Moreover, extreme droughts the year prior could 
have impacted overall malaria prevalence dynamics as 
the model does not account for key environmental fac-
tors [53].

There was a positive relationship between malaria 
prevalence and ITN use in all Malawian regions, with 
high net use occurring in areas with high child malaria 
prevalence. The question ‘did you sleep under a bed net 
last night?’ was used as a proxy for overall ITN use. The 
question focuses on ‘last night’ and does not capture the 
overall ITN use behaviour. The positive association found 
here between malaria prevalence and net use is likely 
due to the large numbers of malaria cases motivating 
the population to sleep under nets more regularly in the 
short term. The MIS household surveys are sensitive to 
recall bias and social desirability factors [54]. Addition-
ally, nightly variables, such as temperature and mosquito 
density, could also greatly impact the use of nets [55]. For 
ITN use throughout the malaria season to be related to 
malaria prevalence, thus identifying its protective ability, 
temporal studies are necessary where fieldworkers inde-
pendently confirm bed net use over both space and time 
throughout the season.

This study revealed spatial heterogeneity in the rela-
tionship between malaria prevalence and the ITN indica-
tors, with child malaria prevalence higher in rural than 
urban areas. It is widely accepted that malaria dynamics 
differ between rural and urban areas due to differences 
in demographics, socioeconomics, housing, drainage and 
access to health care [22, 56–59]. Generally, in Malawi 
malaria is more prevalent in rural areas, although high 
case numbers have also been reported in urban areas [10, 
11, 22, 56, 58, 60]. Malaria control likely has a different 

impact in the urban and rural habitats, due to environ-
mental differences and population movements. Further-
more, the dichotomization of the factors areinconsistent 
across the research field (the definition of what an urban 
or rural area is differs), with a more nuanced definition 
of urban malaria risk and prevention efforts necessary 
in Malawi to control adequately for the contextual fac-
tors that drive malaria prevalence [61]. The results from 
this study further substantiate the complexity of urban/
rural malaria dynamics [22, 56] and show the importance 
of including this factor in the analysis to investigate the 
impact of vector control for sustainable intervention 
measures.

Many studies have shown that the scale-up of ITNs 
has protected the Malawi population from malaria [6–
9]. This study shows that this relationship varies across 
space. Heterogeneity in malaria cases has been identi-
fied previously in Malawi [14, 52, 62]. Malaria epidemiol-
ogy is a complex dynamic between many factors at the 
individual, household and community levels [62]. Con-
founders can have a large impact on this heterogeneity, 
and they are challenging to identify. The introduction of 
vector control in this environment can have very differ-
ent outcomes, with the decline rate in malaria prevalence 
known to be very different across the country [14]. One 
possible explanation for spatial heterogeneity in the rela-
tionship between malaria prevalence and ITN use is that 
it captures the heterogeneity in malaria prevalence, with 
net coverage homogeneously high throughout the coun-
try. A small group of households can account for a major-
ity of cases, which results in spatial heterogeneity in even 
small geographical areas [63]. Another possibility is that 
insecticide and behavioural resistance of vector species is 
impacting net efficacy. Little information about the spa-
tial distribution of malaria vectors and their resistance 
status is available, but reports do indicate heterogeneity 
in its spread with high resistance reported in the south 
and around Lake Malawi [3]. It is also important to note 
the potential effect of other malaria control interventions 
on the heterogeneity of the relationship between malaria 
prevalence and ITNs, including the use of IRS, larval 
source management and house improvements [34, 64] on 
malaria prevalence, which have not been considered in 
this study. Understanding the spatial dynamics will help 
increase the effectiveness of vector control campaigns, 
for example, by changing to bed nets that kill resistant 
mosquitoes more effectively or shifting to different con-
trol tools altogether in specific areas. The fine-scale spa-
tial and temporal heterogeneity and their causes need 
to be investigated further by implementing field studies 
designed to answer these specific questions.

In concurrence with the recommendations from the 
Ministry of Health in Malawi, and in alignment with 



Page 9 of 12Tangena et al. Malaria Journal           (2023) 22:16 	

prior Malawian MIS studies [10, 11], blood smear data 
were used as the sole proxy for malaria prevalence. Both 
the RDT and blood smear malaria testing methods have 
strengths and limitations [65]. As shown here, the RDT 
generally produces higher positivity rates than blood 
smears, as it measures antigens that are detectable in 
the blood up to four weeks after parasite clearance [66]. 
This is contrary to blood smear tests, which measure the 
physical presence of malaria parasites. From a model-
ling perspective, instead of choosing one indicator, joint 
distribution modelling of RDT and blood smear results 
could help improve inference. Recently, Amoah et al.[67] 
developed a geostatistical framework to combine spa-
tially referenced disease prevalence data from multiple 
diagnostics. Joint distribution models draw benefit from 
the combination of different diagnostics, although par-
ticular care needs to be taken for diagnostics with large 
discrepancies in sensitivity and specificity.

It is important to note that malaria prevalence is not the 
only way to measure malaria burden in a country. Stud-
ies have found mortality reduction without a decrease 
in malaria prevalence, and the other way around [68]. 
Furthermore, malaria prevalence here is focused on chil-
dren aged 6-to-59  months, while school-aged children 
are both at higher risk of infection and asymptomatic 
infection [69, 70]. The study could, thus, be improved by 
using malaria prevalence in the entire population as an 
outcome variable, which is not possible with MIS data. 
Excluding this important risk group from the analysis 
could have skewed the data and results. Additionally, the 
MIS data are a snapshot and do not include the season-
ality of malaria. Although surveys are planned during 
peak malaria season, as shown by Chirombo et  al.[15], 
this peak differs yearly in Malawi. Whether data are col-
lected during the peak season or two weeks later hugely 
impacts malaria prevalence estimates. If snapshots of 
malaria prevalence are compared between the differ-
ent years without a clear understanding of the seasonal 
dynamics in these different years, this will greatly influ-
ence the analysis and incorrect conclusions can be made. 
It is important to place malaria prevalence from MIS data 
in the context of the country and investigate how this is 
linked to mortality and other malaria indicators.

The MIS data are currently the only data avail-
able in Malawi to investigate the relationship between 
malaria prevalence and ITN use. As the MIS has not 
been designed for this purpose, caution is advised when 
interpreting the results. Studies designed to investigate 
the impact of ITNs are indispensable to understand the 
efficacy of ITNs [68]. Until these studies are available, 
creative solutions are necessary to analyse MIS data. 
Two studies have previously used MIS data from 2012 
and 2014 to investigate the relationship between child 

malaria prevalence and ITN use. Contrary to this study, 
both found that the number of bed nets per household 
was not significantly associated with malaria morbid-
ity [10, 11]. Both studies focused on socio-demographic 
characteristics, while this study included the spatial coor-
dinates of the data within the analysis. This study shows 
that the impact of ITNs differs geographically. For vector 
control programmes to make informed decisions about 
future control activities, it is essential to have access to 
both country-wide and spatially disaggregated analyses 
of ITNs impact. This spatial disaggregation is especially 
important with an increase in IRS activities since 2019 
and a combination of PBO and dual active ingredient bed 
nets distributed during mass ITN campaigns in 2018 and 
2021 [33].

The non-stationary generalized linear model visualized 
the geographically changing relation between malaria 
prevalence and the ITN indicators. Although the geo-
statistical mixed regression model presented the overall 
spatial relationship between child malaria prevalence and 
bednet indicators, it did not allow for visualization of 
variation of these relationships across Malawi. The maps 
produced by the non-stationary model can help vector 
control programme spatially disentangle the impact of 
interventions on malaria prevalence for vector control 
programs. The non-stationary model has some limita-
tions. For example, the bandwidth is optimized based 
on accurate prediction of the response variable, not on 
accurate estimation of the coefficients [46]. Especially 
when the regression model is fitted within a small kernel 
or with limited data, collinearity can be a problem [71]. 
Nevertheless, for spatially clustered data such as the MIS 
data, this method can be appropriate to provide insights 
into how estimated relations vary across the country. 
Although relationships are not causal, they could high-
light underlying covariates that have been left unmeas-
ured. It is an important tool for eco-epidemiological 
studies [72–74], especially for a disease such as malaria, 
that is so closely related to the environment and the soci-
odemographic dynamics of the population. Yet, spatially 
non-stationary models have only rarely been used in 
malaria research.

Conclusion
Malaria prevalence in children under five had a negative 
association with ITN population access and a positive 
association with ITN use in unadjusted models, show-
ing spatial heterogeneity in these relationships across 
Malawi. The non-stationary generalized linear model 
is an important modelling approach that helps vector 
control programmes visualize variation in the relation-
ship between malaria cases and intervention methods. 
This study highlights the complexity of the relationship 
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between malaria and ITNs and the clear need for spa-
tially disaggregated data and models to inform localized 
control activities.
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