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Abstract 

Background Although Ethiopia has made great strides in recent years to reduce the threat of malaria, 
the disease remains a significant issue in most districts of the country. It constantly disappears in parts of the areas 
before reappearing in others with erratic transmission rates. Thus, developing a malaria epidemic early warning 
system is important to support the prevention and control of the incidence.

Methods Space-time malaria risk mapping is essential to monitor and evaluate priority zones, refocus intervention, 
and enable planning for future health targets. From August 2013 to May 2019, the researcher considered 
an aggregated count of genus Plasmodium falciparum from 149 districts in Southern Ethiopia. Afterwards, a malaria 
epidemic early warning system was developed using model-based geostatistics, which helped to chart the disease’s 
spread and future management.

Results Risk factors like precipitation, temperature, humidity, and nighttime light are significantly associated 
with malaria with different rates across the districts. Districts in the southwest, including Selamago, Bero, and Hamer, 
had higher rates of malaria risk, whereas in the south and centre like Arbaminch and Hawassa had moderate rates. 
The distribution is inconsistent and varies across time and space with the seasons.

Conclusion Despite the importance of spatial correlation in disease risk mapping, it may occasionally be a good 
idea to generate epidemic early warning independently in each district to get a quick picture of disease risk. A system 
like this is essential for spotting numerous inconsistencies in lower administrative levels early enough to take 
corrective action before outbreaks arise.

Keywords Malaria Epidemic Early Warning (MEWS), Spatial time series, Malaria, Disease mapping, Monte Carlo 
maximum likelihood, P. falciparum

Introduction
The risk of malaria has considerably decreased during 
the past few years in various parts of the world. 
Notwithstanding the recent signal of re-emergency 
[1], several regions with moderate to high prevalence 
are successful in reducing the burden of malaria. The 
development of drug-resistant parasites, the urgency of 
other pandemics, and the deterioration of programmes 
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designed for malaria control, as stated by [2], have 
all been factors in the recent comeback of malaria. 
The COVID-19 pandemic re-emergency had a major 
impact on the world’s population in general and Africa 
in particular. There is an urgent need to speed up 
national eradication efforts to meet the 2030 countries’ 
elimination target [3] by concentrating on high-burden 
areas and considering places with a signal of an outbreak.

Since 1958 in Ethiopia, several serious malaria 
epidemics have occurred for approximately 5 to 8 
years in most lowland and some highland areas up to 
2,500 ms of elevation [4]. Meteorological, environmental, 
and socioeconomic factors like; rainfall, temperature, 
humidity, and others are associated with such risk 
[5, 6]. There is evidence of malaria resurgence from 
district to district and over time, as described in various 
literature, including [5, 7, 8] and [9]. Around 60 % 
of the population and 75 % of the country’s territory 
are at risk of malaria, with Plasmodium falciparum 
accounting for roughly 65–75% of all cases that have 
been documented [1, 10]. With an unstable seasonal 
transmission of incidence occurring from September to 
mid-December, immediately after the main rainy season, 
and a minor transmission season occurring between 
March and May [11, 12], the country is thought to have 
low to moderate malaria transmission intensity. Within 
a specific geographic area, the transmission is seasonal 
and changes over space and time, according to [13]. This 
may be related to climate changes that are favorable to 
parasite development that significantly impacted malaria 
transmission. Disease risk mapping is therefore useful to 
identify districts with increased risks [14], as a population 
of all age groups is at risk with an estimated prevalence of 
1.3%.

The COVID-19 [1] emergency and other health 
care needs which are vying for scarce resources and 
various political instability in Ethiopia, leads to the 
re-establishment of the system, regardless of whether 
the illness risk is declining. To enhance public health 
decision-making for the monitoring and prevention of 
malaria epidemics, it is important to build an effective 
malaria epidemic early warning system. By prioritizing 
prone locations and times that are most at risk, such 
a system helps with public health decisions [15]. On 
the other hand, using those approaches to cluster 
districts also supports determining the seasonality of 
the risk rather than using commonly specified patterns 
throughout the country [16, 17].

To predict disease risks and identify regions that 
demonstrate atypical outbreaks, many researchers have 
established malaria epidemic early wake-up calls [16, 18, 
19]. Such tools are designed to identify at-risk districts so 
that preventative measures can be taken before outbreaks 

begin [18]. Many techniques use present or projected 
climatic conditions to forecast the risk of malaria in the 
upcoming weeks and months [16]. Due to the complexity 
of forecasting with an areal model, using only those 
covariates does not determine a clear picture of the 
seasonality of malaria in the area as the seasonality is 
often noticed irrespective of the climatic conditions of 
the area.

In combination with the variability of climatic 
conditions across the districts in the country, developing 
a malaria epidemic early warning system in lower 
administrative levels independently by including 
seasonality parameters helps to understand the 
heterogeneity of malaria in the area. Such approaches 
help to see the variability and understand seasonality 
across each district and then cluster districts based on 
temporal trends. Also, the approach gives stockholders 
in each district to update their plan taking into account 
district-level heterogeneity in addition to what is 
happening in nearby areas. While developing an early 
warning system, [16] takes into account log-transformed 
malaria cases as responses and fits ARIMA and 
SARMA models. Yet, transforming aggregated count 
into a continuous measurement has its drawbacks [20]. 
However, the drawback of modelling aggregated count as 
a continuous measurement by transformation was first 
noted in [20]. This is because generalized linear models 
are one of the better modelling alternatives for such data 
sets. However, when dealing with zero counts, which are 
common in spatial data, a log transformation of counts 
has additional drawbacks [20].

It is a good idea to begin clustering the disease risk at 
each administrative district based on the temporal trend 
and estimating the seasonality therein to gain initial 
insight into the current picture of disease risk. These 
models are crucial for locating and predicting risky areas 
so that timely preventive action may be taken, which is 
sometimes challenging to achieve using areal models. 
On the other hand, the spatial correlation is weaker to 
describe the relationship between surrounding districts 
when the distance between them is quite great. Decision-
makers must therefore be capable of comprehending 
the complex dynamics not just in space but also in time 
utilizing an administrative-level epidemic early warning 
model to forecast threats in the next weeks or months.

One can incorporate covariates to account for 
seasonality when developing such models, however, 
others consider seasonality components on a yearly or 
monthly basis in addition to covariates. Yet, there is no 
sufficient evidence to suggest which possible alternative 
best helps to identify the seasonality of malaria in the 
area which significantly varies with space and time. Using 
the total number of malaria cases in Southern Ethiopia, 
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this study aims to develop an epidemic early warning 
system for malaria in each administrative district. The 
development of such a system could involve modelling 
temporal correlation as a Matérn process [21, 22]. This 
method, which may be built by modelling malaria count 
as a Poisson linear mixed model, is crucial to detecting 
the slow underlying process and re-emergency of the risk 
in the area. Its objectives include:

• Identifying environmental and climatic factors 
associated with malaria risk in each district

• Clustering districts based on the temporal trend
• Develop a malaria epidemic early warning system 

that helps to detect districts with unusual risks and 
trends over time.

Methods
Study setting
The study was carried out in Southern Nation 
Nationalities and People Regional State (SNNPRS), 
in Ethiopia Fig.  1. The region is located between 6 ◦ 03’ 
31.03” North latitude and 36◦ 43’ 38.28” East longitude. 

As a result of the region’s proximity to the equator, 
temperatures can vary from 10 degrees Celsius in high-
altitude areas (4207  ms above sea level) to 28 degrees 
Celsius in the lowlands (360  ms above sea level). The 
region also has a high mean annual rainfall of 400–
2200 mm. The SNNPRS is a vast land with unblemished 
topographical features, including the Great Rift Valley, 
mountains, forests, and plains. Since 2012, 149 rural 
districts have reported weekly malaria surveillance to the 
SNNPRS Public Health Institute.

Data
The data set was obtained from the Ethiopian Public 
Health Institute. It consists of reported malaria counts of 
genus P. falciparum from August 2013 to May 2019 for 
the districts found in Southern Ethiopia. The district-
level population data set was taken from the demographic 
department of the SNNPRS finance office and is 
projected based on 2007 Ethiopian census data [23]. 
Monthly temperature (0C) and total precipitation (mm) 
is extracted from weather and climate data provided 
at 2.5  min or (∼ 21km2) spatial resolution (worldclim.

Fig. 1 Study area map showing districts in the Southern nation nationalities and people regional state (SNNPRS), Ethiopia in 2013
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org/data/monthlywth.html and worldclim21.html). 
The average monthly relative humidity is derived from 
ECMWF Medium-Range Weather Forecasts from ERA-
Interim global atmospheric reanalysis. Finally, nighttime 
light (NTL) is obtained from NOAAs (National Centers 
for Environmental Information), Visible Infrared Imaging 
Radiometer Suite (https:// ngdc. noaa. gov/ eog/ viirs/ index. 
html) available at approximately 100 m at the equator.

Statistical model
Disease risk can occasionally change across time or 
space, or perhaps both. When data sets are collected 
over a large geographic area or an extended period, it is 
sometimes possible to predict that the characteristics 
of the process Sit could vary between districts [24]. The 
model can then be fitted individually for each district 
to assess the distribution of the incidence [16]. Suppose 
yit denotes the monthly aggregated malaria counts of 
genus P. falciparum from ith districts i = 1, ..., 149 at time 
t = 1, ..., 70 in months. Conditional on Sit , the aggregated 
count yit in each administrative district are mutually 
independent Poisson random variables with expectation 
mit�it given as:

Where dit is a vector of space-time referenced explanatory 
variables with associated regression coefficients β , �it− is 
a malaria incidence rate and mit is an offset representing 
the population at risk at each administrative district. 
Assuming Sit , temporal continuous Gaussian process in 
ith districts, Eq. 1 can be re-expressed as:

Sometimes, it is also possible to account for seasonality 
through the covariates only or a combination of both. 
Thus, by considering the covariates also, Eq.  2 can be 
expressed as:

Finally, the model in Eq.  2 and Eq.  3 were fitted using 
aggregated count data at each ith district in Southern 
Ethiopia and then compared the prediction performance. 
where the temporal random effect; Sit assumed to follow 
stationary and isotropic Gaussian process with variance 
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σ 2 and correlation between successive time assumed 
to be exponential with scale parameter φ and shape 
parameter κ given as:

Where θ = (σ 2,φ) . The annualized linear combination 
of the sine and cosine functions and quarterly a year 
were used to model the malaria seasonality in addition 
to covariates for which higher incidence was observed 
mainly from September to December, following the main 
rainy seasons, and from March to May, after minimal 
rainy seasons [25]. These seasonality components were 
incorporated following observed malaria trends and 
some literature on the malaria pattern in the country [12, 
26]. Then, using the following formula, the forecasts can 
be generated for each ith district at time t.

where i = 1, 2, . . . , 149; t = 1, 2, ..., 70 , each integer 
identifies a month, from August 2013 to May 2019. Also, 
�̂it is the mean of the predictive distribution of intensity 
at time t for each district. After that, the integrals can 
be approximated using the MCMC method and then 
forecast the incidence for the next 12 months using 
predicted incidence.

Cross‑validation
First, all of the data sets have been divided into training 
and test sets to evaluate the model’s effectiveness in 
predicting future outcomes. After that, the model’s 
performance was evaluated in terms of how well 
they were able to forecast incidence and estimate the 
accompanying uncertainty for the 12 months. Finally, 
by holding out the case reports of 12 months from June 
2018 to May 2019 that are accessible, the model is fitted 
to the remaining data set i.e. from August 2013 to May 
2018. Using the root-mean-square error, mean absolute 
error, and coverage probability, models’ ability to predict 
outcomes for each of the 12 months are presented.

where �emp
it  is the true observed incidence of ith district in 

the test set at time t = 1, . . . , 12 ; �̂it is the predicted mean 
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incidence; and I
(

�̂
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it < �
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it < �̂

0.975
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)

 is an indicator 
function that takes value 1 if �̂0.025it < �

emp
it < �̂

0.975
it  and 0 

otherwise, with �̂0.025it  and �̂0.975it  corresponding to the 
quantiles; 0.025 and 0.975 of the predictive or posterior 
distribution for �it , respectively.

Finally, a variogram was also used to validate the 
compatibility of the fitted correlation function to the 
data by simulating 60,000 data sets under the fitted 
model. Variogram-based graphical validation was used to 
check fitted temporal correlation in each district using a 
PrevMap R package [27]. Furthermore, RMSE is used to 
evaluate the prediction performance of models with and 
without covariates. One can further see the variogram-
based validation in [24, 27]. PrevMap package in R [27] 
was used to analyze the data.

Results
As shown in Fig. 2, the incidence of malaria changes with 
time and space, with an increased incidence observed 
in the western parts of the region. Additionally, the 
occurrence varies over time, with 2013, 2017, and 
2018 respectively seeing the highest numbers of cases. 
Space-time modelling is useful for comprehending such 
variability and forecasting future trends.

The distribution of the incidence varies over the 
districts with higher incidences observed in districts 
found in the western region and moderate incidences 
found in the districts found in central areas of the region 
as was shown in Fig. 2.

For some of the randomly chosen districts, the plot 
of the observed incidences and residuals over time as 
depicted in Fig.  3 was provided. The illustration shows 
that the incidence distribution pattern alters with 
time and space. In particular districts like Bero and 
Daramalo, there is a signal of an increase in incidence 
as demonstrated in Fig.  3. On the other hand, the 
distribution of residuals further revealed that incidences 
vary across districts. As a result, space-time modelling is 
important to get further insight into the distribution of 
the incidences in each district of the region.

According to the outcome in the lower panel of Fig. 3, 
it is wise to model the residuals in each administrative 
district over time since they fluctuate in distribution. 
There is a signal of increment of the incidences in 
districts like Deguna-Fanigo, Bero, and Sawula despite 
the residuals varying over time. The residuals from the 
non-spatial regression model show the existence of 
temporal correlation as it was shown in the upper panel 
of Fig. 4. Also, the incidence is temporally correlated, as 
it was depicted in the variogram at various time bins in 

Fig. 2 Distribution of yearly aggregated observed incidence of P. falciparum in all districts of Southern Ethiopia from August 2013 to May 2019 
per 1000 population of all age groups
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the upper panel of Fig.  4. This is because the observed 
incidences are out of the confidence bound as shown 
in the upper panel of Fig.  4 indicating the existence of 
temporal correlation which decreases as increases in 
time. Thus, developing a district-level malaria epidemic 
early warning system is a smart place to start identifying 
variability as well as epidemics throughout space and 
time.

Notable malaria cases by genus P. falciparum were 
observed in 2013, 2015, and 2018 across the districts. On 
the other hand, several districts like Boricha, Loko Abaya, 
Wenago, Humbo, Konta, Hamer, Basketo, Yemi, and 
Surima showed peak cases in the year 2013. On the other 
hand, only some of the districts in Sidama region, Hadiya 
and Gambata tamboura Zone exhibited any significant 
malaria incidence. An increase in malaria cases was also 
observed from 2018 to 2019 in several districts of the 
region. Therefore it should be very important to model 
the incidence to anticipate the variation over space and 
time.

Model comparison and validation
To validate our models, (1) a variogram-based approach 
to determine whether the fitted correlation function 
was compatible with the data was incorporated. Several 
variograms from the fitted model had been simulated, 
and then compared to the estimated empirical variogram 
derived from the data. The estimated empirical 
variogram, as shown in the lower panel of Fig.  4, 
completely falls within the 95% confidence interval of 
the simulated empirical variograms, confirming that the 
adopted correlation function is appropriate with our 
data.

(2), then, out-of-sample validation by taking 12-month 
data as a test set as shown in Table  1 was considered. 
The result indicates that the method produces a small 
prediction error with a coverage probability around 75% 
on average which is not much further apart from 95% 
confidence interval. Thus, the fitted model is important 
in predicting disease risk with minimum prediction error 
and coverage probability closer to 95%.

Finally, the researcher evaluates the importance of 
including covariates in predicting space-time variation of 
disease risk. This was done by comparing the prediction 
performance of models with and without covariates. 

Fig. 3 Distribution of observed incidence [upper panel] and residuals from generalized linear mixed model [lower panel] for selected districts 
from August 2013 to May 2019 by P. falciparum in Southern Ethiopia
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The result indicates that including covariates is very 
important in predicting disease as it was shown in Table  
2 with smaller RMSE. Adding climatic variables to 
the model significantly improved the model fit in the 
majority of the districts with smaller RMSE, see Table 2.

The model parameters’ maximum likelihood estimates 
are shown in Table 3 which indicates that the incidence 
varies throughout the year in some of the districts and 
seasonally in other districts. Precipitation, temperature, 
humidity, and nighttime light are significantly associated 

Fig. 4 The figures show the outcomes of the Monte Carlo methods applied to test the temporal independence hypothesis (upper panels) 
and the data compatibility hypothesis (bottom panels) for each district. The 95% confidence region is represented by the shaded areas 
for each hypothesis. The solid lines represent the empirical variogram for each time bin. Using P. falciparum count data from Southern Ethiopia, 
the theoretical variograms derived using the least squares (solid lines) and maximum likelihood (dashed lines) approaches are displayed 
in the lower panel

Table 1 Summary of out-of-sample accuracy: root mean square error (RMSE): Mean absolute error (MAR) and coverage probability 
(CV) obtained for the 12-month validation set data averaged to all districts

Valid 1 2 3 4 5 6 7 8 9 10 11 12

RMSE 0.046 0.022 0.058 0.023 0.013 0.017 0.018 0.039 0.019 0.015 0.015 0.016

MAE 0.012 0.009 0.012 0.009 0.007 0.008 0.009 0.011 0.008 0.008 0.009 0.009

CVP 78.174 75.919 69.154 65.396 74.416 75.919 66.899 72.161 70.658 71.409 69.154 67.651

Table 2 Comparison of models using: root mean square error 
(RMSE): obtained with covariates (1) and without covariates (2) 
for some selected Districts

Districts RMSE1 RMSE2 Districts RMSE1 RMSE2

Wolkite 0.036 0.06 Sheshage 0.0053 0.0054

Dila 0.0092 0.0095 Deguna-Fanigo 0.01 0.012

Selamago 0.025 0.03 Dasenech 0.012 0.02

Arbaminch 0.018 0.038 Bero 0.05 0.06

Hawassa 0.002 0.003 Benatsemay 0.035 0.041
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Table 3 Parameter estimates of the models and their 95% confidence interval for some selected Districts in the Region

Districts Parameter Estimate Districts Estimate

Wolkite β0 −6.95 (−9.26, −4.64) Sheshage −7.13 (−11.12, −3.14)

β1sin(2 ∗ pi ∗ t/12) 0.101 (0.065, 0.138) 0.142 (0.109, 0.174)

β2cos(2 ∗ pi ∗ t/12) 0.417 (0.367, 0.467) −0.224 (−0.264, −0.183)

β3sin(2 ∗ pi ∗ t/4) −0.178 (−0.360, 0.003) −0.163 (−0.331, 0.006)

β4cos(2 ∗ pi ∗ t/4) 0.134 (0.099, 0.169) 0.085 (−0.058, 0.228)

β5 log.precipitation 0.223 (0.105, 0.341) 0.307 (0.207, 0.407)8

β6temperature 0.222 (0.163, 0.282) 0.368 (0.247, 0.488)

β7humidity 0.123 (0.093, 0.154) 0.186 (0.161, 0.211)

β8NTL 0.011 (0.010, 0.012) −4.860 (−6.525, −3.195)

σ 2 0.933 (0.012, 1.853) 0.890 (0.369, 1.412)

φ 5.806 (5.640, 5.972) 6.976 (6.832, 7.120)

Dilla β0 −6.31 (−14.03, 1.42) Selamago −4.425 (−16.326, 7.476)

β1sin(2 ∗ pi ∗ t/12) −0.097 (−0.679, 0.484) 0.089 (−0.143, 0.321)

β2cos(2 ∗ pi ∗ t/12) 0.410 (0.339, 0.482) 0.141 (−0.180, 0.463)

β3sin(2 ∗ pi ∗ t/4) −0.039 (−0.065, −0.012) 0.104 (0.072, 0.137)

β4cos(2 ∗ pi ∗ t/4) 0.071 (0.043, 0.099) 0.278 (0.130, 0.426)

β5 log.precipitation 0.292 (0.170, 0.713) 0.776 (0.266, 2.015)

β6temperature 0.750 (0.488, 1.011) 0.132 (0.112, 0.152)

β7humidity 0.133 (0.091, 0.175) 0.009 (-0.009, 0.027)

β8NTL 0.000 (−0.001, 0.002) 3.495 (−1.148, 8.138)

σ 2 2.326 (1.967, 2.684) 0.223 (0.060, 0.385)

φ 5.939 (5.783, 6.095) 1.524 (1.056, 1.991)

Bero β0 −9.494 (−15.047, −3.941) Dasenech −7.890 (−13.250, −2.531)

β1sin(2 ∗ pi ∗ t/12) −0.154 (−0.486, 0.177) 0.422 (0.374, 0.470)

β2cos(2 ∗ pi ∗ t/12) 0.330 (0.030, 0.630) 0.125 (0.062, 0.188)

β3sin(2 ∗ pi ∗ t/4) −0.066 (−0.20, 0.069) −0.014 (−0.227, 0.198)

β4cos(2 ∗ pi ∗ t/4) 0.011 (−0.134, 0.156) −0.119 (−0.364, 0.126)

β5 log.precipitation 0.634 (0.245, 1.022) 2.099 (0.507, 3.691)

β6temperature 0.083 (0.012, 0.155) 0.192 (0.015, 0.370)

β7humidity −0.005 (−0.021, 0.010) 0.023 (−0.006, 0.052)

β8NTL −1.200 (−2.395, −0.004) −0.625 (−8.857, 7.607)

σ 2 0.768 (0.475, 1.061) 1.024 (0.414, 1.633)

φ 5.393 (5.239, 5.548) 2.863 (2.592, 3.134)

Arbaminch β0 −4.755 (−7.924, −1.585) Hawassa −6.455 (−8.646, −4.264)

β1sin(2 ∗ pi ∗ t/12) −0.329 (−0.577, −0.080) 0.334 (0.132, 0.535)

β2cos(2 ∗ pi ∗ t/12) −0.070 (−0.097, −0.044) 0.085 (−0.156, 0.327)

β3sin(2 ∗ pi ∗ t/4) 0.106 (−0.002, 0.215) 0.020 (−0.082, 0.123)

β4cos(2 ∗ pi ∗ t/4) 0.118 (0.014, 0.223) 0.084 (−0.005, 0.172)

β5 log.precipitation 0.411 (0.256, 0.567) 0.605 (0.197, 1.012)

β6temperature 0.389 (0.290, 0.487) 0.012 (-−0.040, 0.063)

β7humidity −0.037 (−0.055, −0.018) −0.008 (−0.024, 0.007)

β8NTL 0.021 (0.020, 0.021) 0.000 (0.000, 0.001)

σ 2 0.538 (0.140, 0.936) 0.784 (−1.121, 2.689)

φ 7.497 (7.375, 7.619) 17.129 (17.037, 17.220)
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with the incidence in the majority of the district. For 
instance, an increase in precipitation is significantly 
associated with 0.223 (0.105, 0.341), 0.307 (0.207, 0.407), 
0.292 (0.170, 0.713), 0.776 (0.266, 2.015), 2.099 (0.507, 
3.691), 0.411 (0.256, 0.567), 0.634 (0.245, 1.022), 0.605 
(0.197, 1.012) increase in malaria risk in Weleikite, 
Shashago, Dila, Selamago, Dasenech, Arbaminch, Bero 
and Hawassa districts respectively. Whereas, an increase 
in temperature, humidity, and nighttime light is also 
significantly associated with malaria risk in some of the 
districts Table 3.

When combined with the distribution of residual 
in Fig.  3, variance sigma2 , which is significant in the 
majority of the districts, shows the variability of the 
incidence over time. For the districts shown in Table  3, 
it is estimated that the practical range of the temporal 
correlation is log(20)× φ̂ , i.e. log(20)× 1.524 ≈ 4.6 
months and log(20)× 17.13 ≈ 51.3 months respectively 
in Selamago and Hawassa. The practical range is defined 

as the months beyond which the temporal correlation is 
below 0.05. In Selamago and Hawassa, respectively, the 
95% confidence interval for the practical range ranges 
from 3.16 to 6 months and between 50 and 52 months.

Even though no significant outbreaks were observed 
in the study area during the study period, there were 
times when notable incidences were observed from 
September to November 2013 in the Woleikite, 
November to December 2016 in Shashego, January to 
March 2018 in Dila, June to August 2018 in Selamago, 
October to November 2015 and January to February 
2017 in Arbamich and early 2013 in Hawassa city 
Fig.  5. The right panel of Fig.  5 indicates the forecast 
for the next 24 months. The forecast indicates, the 
re-emergence of the incidence in the area as indicated 
in Fig.  5. In general, the decreasing trend of the 
incidence was observed till the end of 2018 with an 
unstable rate, and there is a signal of re-emergency 
starting from 2019. For the last 24 months of the time 

Fig. 5 Prediction results for the districts of Weleikite, Shashego, Dila, Selamago, Duguna-fango, Dasenech, Arbaminch, Bero, and Hawassa overall 
months from 2013 and forecast for the 24 months. The plot shows predictive inference and associated 95% confidence interval for P. falciparum 
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series, the forecasted incidences were provided, and 
the result indicates a signal of the outbreak for most 
districts in the region.

The variation in incidences throughout time and 
space is depicted in the prediction map in Fig.  6. The 
southwest’s Bero, Selamago, Hamer, and Dasenech 
districts also saw higher incidences. Moreover, a 
considerable number of districts in the region’s 
northwest and centre have a moderate to high incidence 
of malaria. Districts in the north and southeast, on the 
other hand, exhibited a lower incidence.

Discussion
According to our study results, it would be ideal to 
establish a malaria epidemic early warning system in 
each administrative district to better understand the 
geographic distribution of cases. As noted by [28] in one 
of the local administrative districts, the incidence varies 
among the districts. This highlights how establishing 
an early warning system for epidemics in each district 
enables the local administration to act right away to 
address the issue rather than constantly waiting for a 
solution from outside sources. Similarly to [1, 12] report, 
the temporal trend in the region varies over time from 
district to district as displayed in Fig. 3. The transmission 

is not consistent; rather, it varies from district to district 
Figs. 2, 5, and 6, with some exhibiting a similar pattern.

To forecast the pattern and re-emergence of malaria 
as shown in Fig.  7 across several districts, a time series 
model-based epidemic early warning system for malaria 
is a promising choice. Yet, as demonstrated in Table. 2, 
incorporating variables dramatically improved prediction 
performance. However, if an outbreak is only briefly 
observed before going away, the value of EWSs as a 
forecasting tool for policymakers may be not used. The 
forecasts as shown in Figs.  7 and 5 indicate cases are 
emerging in some of the districts in the region. As model 
primarily forecasts a nonlinear increase as was shown in 
Fig.  5, which is characteristic of the seasonal pattern of 
the illness risk and is consistent with [5, 16].

Even though this study sheds light on the resurgence 
of the incidents in various districts, the applicability of 
its findings is frequently constrained by the poor quality 
of the available data [29]. This is due to the effect of 
reporting bias affecting surveillance data in low-resource 
environments. When districts are spread out and the 
importance of the spatial correlation is uncertain, time 
series modelling might be useful in identifying these 
situations. The modelling of such cases independently 
provides superior information regarding the incidences 

Fig. 6 Prediction incidence for the selected months of the years for all districts for P. falciparum incidence per 1000 population
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for specific districts, however, as some districts may show 
distinctive tendencies when compared to other districts.

Increases in rainfall have a considerable impact on 
malaria risk, as shown in Table  3, which is consistent 
with earlier research [16, 30]. This may be because 
mosquitoes breed near water bodies, where they are 
occasionally visible after a very strong rainstorm. This 
is typical in the majority of the districts in the area, as it 
has been widely discussed in various works of literature 
[31]. On the other hand, there is a strong correlation 
between the risk of malaria and the temperature. 
Malaria risk rises by 0.22 in Woleikte, 0.37 in Shashego, 
0.750 in Dila, 0.132 in Selamago, 0.083 in Bero, 0.19 in 
Dasenech, 0.39 in Arbaminch, and 0.012 in Hawassa 
city with each degree of temperature increase. This 
implies that a rise in temperature and rainfall correlates 
with [28] and has a strong favourable impact on all 
districts with moderate to high malaria cases. In 
Woleikte, Shashego, and Dila districts, respectively, an 
increase in humidity is similarly linked to increases in 
malaria risk of 0.123, 0.186, and 0.133%; however, this 
association is not statistically significant in some of the 
other districts. On the other hand, a rise in nighttime 
light is adversely correlated with 0.86 in Shashsgo, 0.2 

in Bero, and 0.625 in Dasenech increase in malaria risk. 
Yet there were also discovered positive connections in 
other districts as presented in Table 3.

As a signal of re-emergency is noticed in some districts 
in the region, malaria risk prediction with greater 
accuracy is currently crucial in nations like Ethiopia 
as seen in Fig.  5. Someone might take into account a 
different option that aids in the detection of hotspots 
while designing such a system. Because infectious 
diseases like malaria fluctuate with both space and time 
with notable influence of nearby areas, it may therefore 
be very important to build a system that considers spatial 
correlation into account.

Fitting more precise malaria models for the future, not 
only to revisit our findings but also to precisely address 
various questions about the underlying trend in districts 
and various malaria cases with multiple Plasmodium 
species could be important. A promising path has recently 
been opened up by the development of discrete and 
continuous spatial models for infectious disease dynamics 
[14]. Future research anticipates going into more detail 
on some of the important drivers and aspects that this 
study did not sufficiently explore regarding the prevalence 
of malaria in Southern Ethiopia. The results obtained 

Fig. 7 Forecasted map of P. falciparum incidence per 1000 population in the region from June 2018 to May 2019 for all districts
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highlight the value of dynamically identifying districts with 
elevated risks, but additional modelling is needed to fully 
understand the spatio-temporal variations of malaria risk 
in the region.

Conclusion
Space-time modelling of malaria risk is crucial for 
describing the aetiology of the disease and directing 
decision-making at the lower administrative levels. A 
re-emergency signal was seen a few months/years ago 
with an unstable rate despite the incidence having been 
on the decline for the past few years. Districts found in 
the southwest have detected higher incidence that varies 
with time. When incidence heterogeneity increases, it is 
important to address “bottlenecks” such as dealing with 
persistent foci, subsequent re-emergencies, and parasite 
development areas. In a changing climate, sustainable and 
adaptive plans should now be guided from an informed 
local level.
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