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Abstract 

Background  Attractive targeted sugar bait (ATSB) is a novel approach to vector control, offering an alternative mode 
of insecticide delivery via the insect alimentary canal, with potential to deliver a variety of compounds new to medi-
cal entomology and malaria control. Its potential to control mosquitoes was recently demonstrated in major field 
trials in Africa. The pyrrole chlorfenapyr is an insecticide new to malaria vector control, and through its unique mode 
of action—disruption of ATP mediated energy transfer in mitochondria—it may have direct action on energy trans-
fer in the flight muscle cells of mosquitoes. It may also have potential to disrupt mitochondrial function in malarial 
parasites co-existing within the infected mosquito. However, little is known about the impact of such compounds 
on vector competence in mosquitoes responsible for malaria transmission.

Methods  In this study, ATSBs containing chlorfenapyr insecticide and, as a positive control, the anti-malarial drugs 
artemether/lumefantrine (A/L) were compared for their effect on Plasmodium falciparum development in wild 
pyrethroid-resistant Anopheles gambiae sensu stricto (s.s.) and for their capacity to reduce vector competence. Female 
mosquitoes were exposed to ATSB containing either sublethal dose of chlorfenapyr (CFP: 0.025%) or concentrations 
of A/L ranging from 0.4/2.4 mg/ml to 2.4/14.4 mg/ml, either shortly before or after taking infective blood meals. The 
impact of their component compounds on the prevalence and intensity of P. falciparum infection were compared 
between treatments.

Results  Both the prevalence and intensity of infection were significantly reduced in mosquitoes exposed 
to either A/L or chlorfenapyr, compared to unexposed negative control mosquitoes. The A/L dose (2.4/14.4 mg/ml) 
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totally erased P. falciparum parasites: 0% prevalence of infection in female mosquitoes exposed compared to 62% 
of infection in negative controls (df = 1, χ2 = 31.23 p < 0.001). The dose of chlorfenapyr (0.025%) that killed < 20% 
females in ATSB showed a reduction in oocyte density of 95% per midgut (0.18/3.43 per midgut).

Conclusion  These results are evidence that chlorfenapyr, in addition to its direct killing effect on the vector, 
has the capacity to block Plasmodium transmission by interfering with oocyte development inside pyrethroid-resist-
ant mosquitoes, and through this dual action may potentiate its impact under field conditions.

Keywords  Anopheles gambiae s.s., Chlorfenapyr, Attractive targeted sugar baits, Oocyst prevalence, Oocyst intensity, 
Vector control

Background
Current vector control relies primarily on the use of 
long-lasting insecticidal nets (LLINs) and indoor resid-
ual spraying (IRS). In sub-Saharan Africa, the up-scaling 
of these control interventions has resulted a decline in 
malaria burden over the last two decades [1]. Despite 
the progress achieved [2, 3], elimination remains distant 
prospect, made worse by the spread of insecticide resist-
ance across Anopheles mosquito species, which is under-
mining the global effort [4–6]. To maintain momentum 
and overcome insecticide resistance, the shortfalls of the 
current interventions need to be addressed with new, 
complementary vector control tools, one of which is tar-
geted sugar bait [7].

Attractive targeted sugar bait (ATSB) is a novel vec-
tor control tool that exploits the need for both male and 
female mosquitoes to take sugar meal while drawing on 
insecticide more typically used in agriculture [8]. There 
have been several successful attempts to control mos-
quito populations using ATSB outdoors [9–12]. Indoor 
use of ATSB is effective too, as indicated in experimen-
tal hut trials that demonstrated indoor use of ATSB 
in combination with an untreated bed net or LLINs 
can induce high levels of Anopheles gambiae mortal-
ity in Côte d’Ivoire and Tanzania [13, 14]. A large-scale 
field trial of ATSB conducted in Mali, has significantly 
reduced malaria parasite transmission by reducing the 
number of older females and the number of sporozoite 
infected females [15]. So far, almost all studies on toxic 
sugar bait are evaluations of their gross effects, the aim 
being to reduce the longevity the wild mosquitoes. The 
potential effect of toxic sugar bait on the parasite devel-
opment inside wild mosquitoes has received scant atten-
tion. Whether toxic sugar bait could affect parasite 
development inside wild resistant mosquitoes is worthy 
of further study in this era of high insecticide resistance. 
Indeed mosquito populations that are the most danger-
ous for humans and of greatest epidemiological relevance 
are insecticide-resistant infective mosquitoes [16].

Numerous studies have investigated potential effects 
of insecticides and insecticide resistance on vec-
tor competence or effect of Plasmodium infection on 

mosquito behaviour. A recent study demonstrated a 
cost of Plasmodium infection on mosquito survival 
at transmissible stages of infection [17]. According to 
Thievent et al. [18], infection reduces personal protec-
tion offered by insecticide-treated nets (ITNs). Another 
study found that infection can partially restore sus-
ceptibility to insecticide among mosquitoes carrying 
resistance alleles [19]. In some studies, exposure to del-
tamethrin, dichloro-diphenyl-trichloroethane (DDT) or 
bendiocarb insecticides inhibited development of Plas-
modium falciparum in insecticide-resistant An. gam-
biae sensu stricto (s.s.) [20, 21]. However, other studies 
found no effect of insecticides on parasite development 
in mosquitoes [22].

A recent study published in the journal Nature tested 
the hypothesis that the use of anti-malarial compounds 
might clear Plasmodium infections directly in the Anoph-
eles [23]. The authors demonstrated that the develop-
ment of P. falciparum can be completely blocked when 
female An. gambiae mosquitoes take up low concentra-
tion of the anti-malarial atovaquone [23]. Almost all of 
these studies have used insecticide delivery methods that 
involve mosquito contact with insecticides on bed net or 
test paper [20, 21, 23].

ATSB constitutes a novel means of deploying insecti-
cide against mosquitoes and has the advantage of being 
able to utilize a wide range of compounds developed for 
crop pests. Besides tarsal contact, the toxins are admin-
istrable by ingestion and absorbed through the crop or 
midgut [13, 14]. A major three-centre trial is currently 
underway in Mali, Kenya, and Zambia [24].

Oocyst formation in the mosquito midgut is a criti-
cal stage in the development of the malaria parasite and 
thus further spread of the pathogen through saliva [25]. 
Because fewer P. falciparum ookinetes successfully cross 
the midgut epithelium to form oocysts [25, 26], it is 
therefore possible that ATSB ingestion by the mosquito 
could cause full parasite arrest in the midgut, and prevent 
transmission via infective salivary glands.

In this study, it was investigated whether ATSBs con-
taining insecticide or anti-malarial drugs could be an 
appropriate means to block P. falciparum development 
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in wild pyrethroid-resistant An. gambiae s.s. from Côte 
d’Ivoire.

Methods
Mosquito collection and rearing
Anopheles gambiae sensu lato (s.l.) larvae were collected 
from breeding sites in rice fields around the experimen-
tal station of Mbe. Adult and larval mosquitoes were 
maintained in a purpose-built insectary at 27 ± 2  °C and 
80% relative humidity with a light: dark photoperiod of 
12:12  h. Larvae were reared in groups of about 400 in 
1.5 l of distilled water and were fed TetraMin® fish food. 
Adults were fed a 10% sugar solution and took up blood 
meal on volunteers’ feet. Mosquitoes used for this study 
were An. gambiae s.s. G2 strain, resistant to pyrethroids, 
DDT, and carbamates with mechanisms that include 
mixed function oxidases (MFOs), esterases and voltage-
gated sodium channel (VGSC) point mutations [27, 28].

Plasmodium falciparum experimental infection
Experimental infections were performed as described 
by Bousema et  al. [29]. Ethical approval was obtained 
from the Ministry of Health in Côte d’Ivoire through the 
National Ethic Committee of life Sciences and Health N° 
023-22/MSHPCMU/CNESVS-km. All human volunteers 
were enrolled after receipt of written informed consent 
from their legal guardians. Screening for P. falciparum 
infectious human carriers were conducted in primary 
school groups in Bouaké, Côte d’Ivoire. Eligible children 
were driven to the laboratory after health examination 
and gametocyte-containing blood was collected. The 
blood was centrifuged and then the plasma was removed 
and replaced with European naïve AB serum. This pro-
cedure avoids natural transmission-blocking immune 
factors [30]. The 3–5 days old mosquitoes were allowed 
to feed through pre-warmed (37  °C) membrane feeders. 
After one hour of exposure, unfed females were discarded 
and only fully fed mosquitoes were kept and maintained 
in the same conditions as during the rearing. Fed females 
were given the opportunity to oviposit. This procedure 
was repeated nine times, each feeding assay using a dif-
ferent gametocyte-infected blood source. All participants 
carrying Plasmodium species were treated with anti-
malarial drugs according to the national guidelines.

ATSB laboratory bioassays
Compound exposures and preparation of ATSB solution
The Attractive Sugar Bait (ASB) solution was based on a 
recipe of 35% guava juice purchased locally in supermar-
ket, 10% sugar solution, 2% orange food dye also bought 
locally in same supermarket; guava juice is known to be 
a strong attractant for An. gambiae s.l. [11]. The ATSB 
solution contained chlorfenapyr (Phantom SC 21.45%, 

BASF) concentrations of 0.0025–0.5% as the toxin [13, 
14]. Chlorfenapyr is a pro-insecticide, activated by 
cytochrome P450s within the insect, that was shown to 
be effective in ATSB in previous studies [14]. This insec-
ticide shows no cross resistance to common insecticide 
classes, is effective against pyrethroid-resistant mosqui-
toes [31, 32].

The ATSB solution also contained anti-malarial com-
pound artemether/lumefantrine 80/480  mg tablets 
(Plasmocid, CIPHARM), indicated for the treatment of 
uncomplicated cases of malaria due to P. falciparum in 
adults. Concentrations of A/L ranging from 0.4 /2.4 mg/
ml to 2.4/14.4 mg/ml were incorporated into ASB. Arte-
misinin derivatives are endoperoxides that bind to haem 
in the digestive vacuole of the parasite. This interaction 
is believed to cause the release of free radicals that are 
toxic to the cellular constituents [33]. Preliminary bio-
assays performed with these anti-malarial drugs showed 
no impact on mosquito survival during the 2 weeks of 
testing.

ATSB bioassay
Bioassays were performed as described by Furni-
val‑Adams et al. [13]. ATSB solution (25 ml) was soaked 
into cotton wool pads and inserted into testing cages. 
Fifty female mosquitoes, 4–5 days old were denied access 
to sugar for six hours and then introduced into cages 
(30 cm × 30 cm × 30 cm). Mosquitoes were left overnight 
to interact with the ATSB solution. The following morn-
ing, mosquitoes were blood fed on gametocyte-infected 
blood by Direct Membrane Feeding Assay (DMFA) 
methods.

In the second test, mosquitoes were exposed to ATSB 
solution 24  h after feeding an infected blood meal. For 
both tests, 25 ml of ASB (without insecticide or anti-
malarial drug) was used as a negative control. Female 
mosquitoes exposed to ATSB before or after infection 
were held under standard insectary conditions on a 10% 
sucrose solution.

Oocyst counting
Mosquitoes were maintained for 6 to 7 days in the insec-
tary. Then, midguts were dissected in 0.4% mercuro-
chrome (Sigma-Aldrich), and the infection prevalence 
and intensity of each individual female was determined 
by presence and number of oocysts, under a light 
microscope.

Statistical analysis
Infection data consisted of two response variables: 
The prevalence of infection that were calculated by 
dividing the number of infected mosquitoes (those 
with one or more oocysts) by the number of dissected 
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mosquitoes and the intensity of infection expressed by 
the number of oocysts per infected mosquito midgut.

Statistical analysis for the comparison of prevalence 
of infection and the mean oocyst intensity between 
treatments were performed using R software version 
4.1.2, and figures with GraphPad Prism 7 software. 
Malaria drug compound and chlorfenapyr datasets 
were analysed using the same statistical method. The 
prevalence of infection were compared using a bino-
mial mixed effect model (function “glmer” from the 
package lme4). The fixed variables were the treatment. 
The replicate were considered as a random intercept 
to adjust for sampling variations. For oocyst intensity, 
differences in the number of oocysts in mosquito mid-
gut of both intervention and negative controls groups 
were analysed using a Mann–Whitney rank sum test.

Results
Anopheles gambiae s.s. mosquitoes, 3–5 days old, 
resistant to insecticides were experimentally infected 
with P. falciparum-containing blood collected in 
human participants in Bouaké, Côte d’Ivoire. Preva-
lence of infection varied between 61 and 72% across 
infectious blood samples from distinct blood donors. 
Overall, very low oocyst loads among blood fed female 
mosquitoes were observed. Dissection at 6–7 days 
post-infective blood meal showed oocyst numbers 
per female ranging from 1 to 50 across experimental 
infections.

Effect of anti‑malarial drug on Plasmodium falciparum 
development
The first experiment investigated whether Plasmodium 
falciparum development was affected in female mosqui-
toes exposed to a range of anti-malarial drug concen-
trations 24  h after initial infection. The results showed 
a significant dose-dependent protective effect against 
infection. The prevalence and intensity of infection were 
lower in mosquitoes that were exposed to anti-malarial 
ATSB compared with the non-exposed negative control, 
irrespective of concentration tested (Fig.  1): the lowest 
dose of A/L (0.4/2.4  mg/ml) induced 61.3% reduction 
in the prevalence of oocysts (24% [16.1–34.9] for ATSB 
exposure compared with 62% [51.1–71.7] prevalence 
in the control, OR [95% CI] = 0.19 [0.1–0.3], p < 0.0001) 
(Fig.  1); it also decreased significantly the number of 
oocyst in mosquitoes exposed to A/L (mean of 0.32 ± 0.07 
oocysts/midgut) compared with 1.65 ± 0.26 in the con-
trol (df = 1, U = 2202, p < 0.0001 ) (Fig.  1). The highest 
dose (2.4/14.4  mg/ml) presented completely eliminated 
P. falciparum parasites: 0% prevalence infection in female 
mosquitoes exposed compared with 62% [51.1–71.7] 
prevalence of oocyst infection in the negative control 
(Fig. 1).

The next experiment investigated the timing of deliv-
ery of ATSB to the infected mosquitoes. The dosage was 
fixed at a low concentration of A/L (0.8/4.8 mg/ml) and 
batches of mosquitoes were then exposed mosquitoes to 
a selected low dose of A/L (0.8/4.8  mg/ml), either 15  h 
before or 24 h after exposing the mosquitoes to infectious 
blood meal and analysing the effect on oocyst prevalence 

Fig. 1  Oocyst burden and prevalence of infected-females and exposed to differents doses of Artemether + Lumefantrine. 
A + L = Artemether + Lumefantrine, number of oocysts per female midgut is presented as a scatter dot plot for each treatment, Oocyst prevalence 
is presented as the bar chart, Results are presented as mean ± standard error (s.e)
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and oocyst load. In mosquitoes exposed to this dose of 
A/L, oocyst prevalence (5% [1.6–14.5]) was significantly 
lower than that in control (68% [55.1–78.3], OR [95% 
CI] = 0.02 [0.01–0.09], p < 0.0001) (Fig.  2). The oocyst 
intensity was also significantly reduced in exposed female 
(mean of 0.05 ± 0.03 oocysts/midgut) compared to con-
trol (3.43 ± 0.68, U = 642, p < 0.0001) (Fig.  2). The timing 
of exposure to A/L either 15 h pre-infection or 24 h post-
infection made no significant difference to the effective-
ness of the A/L treatment: 5% or 7% prevalence of oocyst 
infection; both were effective relative to the control.

Effect of chlorfenapyr on Plasmodium falciparum 
development
The second experiment investigated the impact of chlo-
rfenapyr insecticide on parasites in mosquito midgut. 
Chlorfenapyr concentration (0.025%) was selected to 
induce < 25% of mosquito mortality (this is defined as the 
‘sublethal dose’ in context of the experiment) in order to 
enable 80% mosquito survival and assess the treatment 

efficacy on P. falciparum development (Table  1). Fig-
ure  3A shows the prevalence of oocyst infection and 
intensity of infection in An. gambiae s.s. exposed to 
ATSB solution containing chlorfenapyr at 0.025% con-
centration prior to infection. Chlorfenapyr exposure 

Fig. 2  Prevalence of infection and oocyst intensity in An. gambiae s.s. exposed to ATSB solution (Artemether + Lumefantrine incorporated 
into ATSB) 15 h pre-infection (A) and 24 h post infection (B). A + L = Arthemether + Lumefantrine. Number of oocysts per female midgut is presented 
as a scatter dot plot for each treatment. Oocyst prevalence is presented as the bar chart, Results are presented as mean ± standard error (s.e)

Table 1  Proportion of Anopheles gambiae s.s. killed after 72 h in 
preliminary bioassays to determine a sublethal concentration of 
chlorfenapyr

Strain CFP 
concentration 
%

Total tested Total dead % 
mortality 
after 72 h

0.5 101 101 100
0.25 93 77 82.8

M’BE G2 0.125 107 66 61.7
0.05 91 41 45.1
0.025 103 18 17.5
0.0025 80 7 8.7
0 106 3 2.8



Page 6 of 10N’Guessan et al. Malaria Journal          (2023) 22:344 

significantly reduced oocyst prevalence and oocyst inten-
sity both before and after infection (Fig.  3A). Infected 
mosquitoes exposed to chlorfenapyr had lower preva-
lence of infection (19% [9.2–34.9]) than unexposed mos-
quitoes (68% [55.0–78.3], OR [95% CI] = 0.1 [0.04–0.3], 
p < 0.0001) (Fig. 3A). A reduced oocyst load was observed 
in mosquitoes exposed to chlorfenapyr (mean oocyst 
in midgut = 0.18 ± 0.06) compared to the control (mean 
oocyst in midgut = 3.43 ± 0.6, p < 0.0001). When mosqui-
toes were exposed to a sublethal dose of chlorfenapyr 
(0.025% dose) after an infectious blood meal, a signifi-
cant reduction of both infection rate and oocyst intensity 
were found: 90% reduction of oocysts prevalence (6.6% 
[2.7–14.9] in mosquito exposed to CFP vs. 67.1% [60.8–
72.8] with control, OR [95% CI] = 0.03 [0.01–0.0.08], 
p < 0.0001) and oocyst intensity (mean = 0.07 ± 0.03 in 
mosquito exposed to CFP compared with 3.22 ± 0.42 in 
Control, U = 2094, P < 0.0001) (Fig. 3B).

Effect of chlorfenapyr vs. anti‑malarial on Plasmodium 
falciparum development
Sublethal chlorfenapyr dose induced significantly lower 
prevalence of infection than the lower anti-malarial dose 
(6.6% [2.7–14.9] for CFP vs. 24% [16.1–34.9] for A/L, OR 

[95% CI] = 0.22 [0.06–0.7], p < 0.012) (Fig. 4). The differ-
ence was no longer significant when the anti-malarial 
dose doubled either before or after infected blood meal 
(p > 0.05) (Fig.  5). Increasing A/L to 1.6/9.6  mg/ml and 
2.4/14.4  mg per ml had detrimental effect on infection 
prevalence (84 and 100% reduction of infection preva-
lence, respectively) relative to the impact with chlor-
fenapyr (Fig. 4).

Discussion
The midgut stages of parasite development constitute 
prime targets for strategies aiming to block malaria trans-
mission. In this study, it was investigated whether anti-
malarials or insecticides, incorporated into ATSB could 
affect the development of malaria parasite, P. falciparum, 
in wild An. gambiae s.s. pyrethroid resistant strains con-
taining both metabolic and voltage-gated sodium chan-
nel (VGSC) kdr mechanisms of pyrethroid resistance. 
Female mosquitoes were fed on ATSB either before or 
after receiving infective blood meals to reveal vulnerable 
times of exposure to ATSB. The results showed that expo-
sure to a range of concentrations of anti-malarial drugs 
significantly reduced the prevalence and intensity of P. 
falciparum oocysts in resistant An. gambiae s.s. Parasites 

Fig. 3  Prevalence of infection and oocyst intensity in An. gambiae s.s. exposed to ATSB solution (chlorfenapyr incorporated into ATSB) 15 h 
pre-infection (A) and 24 h post infection (B). CFP = Chlorfenapyr. Number of oocysts per female midgut is presented as a scatter dot plot for each 
treatment. Oocyst prevalence is presented as the bar chart, results are presented as mean ± standard error (s.e)
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were completely eliminated from the midguts of infected 
females exposed to A/L treatment (2.4/14.4  mg/ml), 
whereas females exposed to negative control ASB showed 
a high prevalence and intensity of infection. This is con-
sistent with previous observations that show impact of 
anti-malarial drugs on Plasmodium development. It has, 
been demonstrated that the early midgut development 
of P. falciparum is arrested by exposing An. gambiae to 
surfaces treated with the anti-malarial drug atovaquone 
[23]. The development of parasites was also inhibited 

when mosquitoes were fed on mice infected with Plas-
modium berghei and injected with the same anti-malar-
ial drug [34]. Atovaquone is mitochondrial-acting drug 
that affects parasitic development in mosquitoes at the 
zygote–ookinete transition [23]. Artemether/lumefan-
trin drugs used in this study are known to have gameto-
cytocidal effects [35] and their anti-malarial properties 
stem from interference with parasite transport proteins 
and disruption of parasite mitochondrial function [36]. 
The results indicated that these compounds also might 
act on early stage of P. falciparum in mosquito midgut. 
In this paired experiment, the anti-malarial A/L was 
compared, as positive control, to the pyrrole insecticide 
chlorfenapyr. Artemether/Lumefanthrin is not an insecti-
cide. In this context, the two treatments are reducing the 
‘vector competence’ of the mosquito, a term borrowed 
from insect immunology and the concept of increasing 
the mosquito’s refractoriness to infection. Depending of 
the dosages administered, the insecticide and the anti-
malarial appear to interfere with vector competence of 
the mosquito to a comparable degree.

One of the most interesting findings is that exposure 
to chlorfenapyr insecticide reduced both prevalence and 
intensity of infection in An. gambiae. This aligns with 
recent studies showing that sublethal deltamethrin, DDT 
or bendiocarb inhibited development of P. falciparum 
in insecticide-resistant An. gambiae s.s. [21, 37]. Ear-
lier experiments investigating Plasmodium yoelii and P. 
falciparum development in the Asian vector Anopheles 
stephensi also showed that sublethal exposure to pyre-
throids inhibited development of oocysts in the midgut 
[38]. Strain differences and genetic factors, including 
insecticide resistance all affect competence to transmit 
P. falciparum [37] and P. berghei parasites [39]. Resistant 

Fig. 4  Prevalence of infection in An. gambiae s.s. exposed to ATSB solution 
(chlorfenapyr or differents doses of Artemether + Lumefantrine) 24 h 
post infection. CFP = Chlorfenapyr, A + L = Artemether + Lumefantrine. 
Results are presented as mean ± standard error (s.e). Different letters 
indicate significant differences

Fig. 5  Prevalence of infection in An. gambiae s.s. exposed to ATSB solution 15 h pre-infection (A) and 24 h post infection (B). CFP = Chlorfenapyr, 
A + L = Artemether + Lumefantrine. Results are presented as mean ± standard error (s.e)
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strains seem less conducive to parasite development than 
susceptible strains [39].

In the past, the side-effects of vector-borne chemi-
cals on malarial parasites was minor topic in pesticide 
research [21]. With the selection of high level pyrethroid 
resistance to insecticide treated nets, and the problem 
this presents for malaria control, research on the indi-
rect effects of pyrethroid on Plasmodium was initially 
consigned to the sidelines. However, the last 2 years has 
led to revision in thinking. Pyrethroid resistance has led 
to the development of Dual-active ingredient (AI) LLIN. 
Some insecticides on nets have turned out to be good and 
some disappointing. The most promising net of all is the 
chlorfenapyr-pyrethroid net Interceptor G2 which in two 
recent cluster randomised controlled trials has shown 
it to be a most effective Dual-AI LLIN for preventing 
malaria transmitted by pyrethroid resistant mosquitoes 
[40, 41]. Chlorfenapyr has many unique properties, fore-
most of which are its novel mode of action and its appar-
ent lack of cross resistance to existing insecticide classes 
[31, 42–44]. Its efficacy against all known forms of insec-
ticide resistance, and now with its Plasmodium-blocking 
properties revealed, perhaps this marks a start to under-
standing why chlorfenapyr-pyrethroid LLIN appear so 
much more effective than pyrethroid-only treated LLIN 
and PBO-pyrethroid treated LLIN against populations of 
insecticide resistant vectors [40, 41].

How parasites are being affected by chlorfenapyr inside 
the mosquito is less clear. Chlorfenapyr is a pro-insecti-
cide which functions to uncouple oxidative phosphoryla-
tion in the mitochondria, resulting in disruption of ATP 
production and subsequent death of the insect [45, 46]. 
This insecticide may act directly on both the insect flight 
muscle and the parasite mitochondrial function via tar-
sal contact. It is also possible that other mechanisms such 
as oxidative stress induced by insecticide exposure may 
have interacted with prevention of Plasmodium develop-
ment through higher reactive oxygen level and increased 
cytochrome P450 expression [47]. More studies are 
needed to fully understand the mechanisms of interac-
tions between different insecticides and the parasite in 
the mosquito vector, and the role these have in modulat-
ing transmission by insecticide resistant vectors.

An important bridge made by the present paper is its 
contribution to explaining why chlorfenapyr-pyrethroid 
LLIN have proven effective in cluster randomized con-
trolled trials in West and East Africa [40, 41]. It might 
be because chlorfenapyr kills mosquito and Plasmodium 
parasite equally well despite the modus operandi of chlo-
rfenapyr being different by tarsal contact with LLINs 
and ingestion into insect midgut after feeding on ATSB. 
Chlorfenapyr kills Plasmodium parasites just as well as 
an anti-malarial, it kills mosquitoes better than any other 

insecticide known to malaria control because of the lack 
of cross resistance.

A limitation of the present study is the absence of 
insecticide-ATSB positive controls to compare their Plas-
modium-killing effects, such as ATSB with pyrethroid 
insecticide or chlorfenapyr absorbed through the insect 
cuticle following tarsal contact with chlorfenapyr treated 
nets. Both positive controls would be worth exploring 
in their own right, in follow-up experiments, to confirm 
whether the effect of chlorfenapyr on Plasmodium is 
rare/unique among novel insecticides or is limited to the 
ATSB mode of delivery.

Together, these results reinforce the idea of targeting 
specifically infective mosquitoes, the agents responsi-
ble for malaria transmission. A promising method for 
this purpose is ATSB, a novel vector control approach 
that could interfere with parasite development inside the 
mosquito.

Conclusion
The present study demonstrated that the use of ATSB 
could obstruct malaria transmission by interfering with 
parasite function or development inside the mosquito. 
The potential of the ATSB approach for delivery of new 
compounds for malaria control may make it an ideal pre-
ventive tool for controlling pyrethroid-resistant mosqui-
toes and preventing malaria parasite transmission. This 
study provided evidence for a new approach to reducing 
the global burden of malaria and potentially other mos-
quito vector-borne diseases. Whether or not ATSB will 
become a powerful tool for vector control in the future, 
the use of sugar baits in laboratory experiments has 
already led to greater understanding why chlorfenapyr 
mixed with pyrethroid in recent chlorfenapyr-pyrethroid 
LLIN trials nets is a potent combination.
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