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Abstract 

Background Several countries in Southeast Asia are nearing malaria elimination, yet eradication remains elusive. 
This is largely due to the challenge of focusing elimination efforts, an area where risk prediction can play an essential 
supporting role. Despite its importance, there is no standard numerical method to quantify the risk of malaria infec‑
tion. Thus, there is a need for a consolidated view of existing definitions of risk and factors considered in assessing risk 
to analyse the merits of risk prediction models. This systematic review examines studies of the risk of malaria in South‑
east Asia with regard to their suitability in addressing the challenges of malaria elimination in low transmission areas.

Methods A search of four electronic databases over 2010–2020 retrieved 1297 articles, of which 25 met the inclu‑
sion and exclusion criteria. In each study, examined factors included the definition of the risk and indicators of malaria 
transmission used, the environmental and climatic factors associated with the risk, the statistical models used, 
the spatial and temporal granularity, and how the relationship between environment, climate, and risk is quantified.

Results This review found variation in the definition of risk used, as well as the environmental and climatic factors 
in the reviewed articles. GLM was widely adopted as the analysis technique relating environmental and climatic 
factors to malaria risk. Most of the studies were carried out in either a cross‑sectional design or case–control studies, 
and most utilized the odds ratio to report the relationship between exposure to risk and malaria prevalence.

Conclusions Adopting a standardized definition of malaria risk would help in comparing and sharing results, 
as would a clear description of the definition and method of collection of the environmental and climatic variables 
used. Further issues that need to be more fully addressed include detection of asymptomatic cases and consid‑
erations of human mobility. Many of the findings of this study are applicable to other low‑transmission settings 
and could serve as a guideline for further studies of malaria in other regions.
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Background
Malaria remains the most serious life-threatening vec-
tor-borne disease. Approximately 240 million cases of 
malaria infection and 620,000 deaths were reported 
worldwide in 2020. Despite the high global incidence, 
some regions have made significant progress. Several 
countries in Southeast Asia, such as Thailand, Malaysia, 
and Indonesia, are nearing malaria elimination [1, 2]. Yet, 
many challenges exist in achieving the last mile of malaria 
elimination. In particular, it requires targeted elimination 
efforts, where risk prediction can play a supporting role.

Tracking progress through surveillance is essential to 
target elimination efforts [3], but effective surveillance 
faces challenges in near-elimination areas. Asymptomatic 
cases typically represent a small percentage of all malaria 
cases (less than 5%) [1], and the importance of detecting 
them increases in areas nearing elimination. Detection of 
asymptomatic cases requires active surveillance, which 
entails a high input of effort and costs. Furthermore, the 
high spatial and temporal heterogeneity of malaria cases 
in low-transmission settings can result in small areas of 
relatively high transmission. Both these factors mean 
that surveillance must be highly targeted. In addition, the 
importation of malaria cases from high-incidence areas 
of neighboring countries poses a further challenge. Accu-
rate spatiotemporal risk estimates are essential in iden-
tifying transmission hotspots and potential importation 
routes, which are needed to inform control agencies to 
focus surveillance and control efforts.

Despite its importance, there is no standard numerical 
method to quantify the risk of malaria infection, and no 
acceptable risk level is advised [4]. As a result, each study 
of risk selects or establishes its own definition of the risk 
of malaria infection and designs a quantitative method to 
measure it, leading to incomparable results. Thus there is 
a need for a consolidated view of existing definitions of 
risk and factors/predictors considered in assessing risk to 
analyse the merits of risk prediction models, particularly 
in low transmission areas.

The risk of malaria infection in a region is typically 
defined in terms of prevalence (proportion of malaria 
cases) or entomological inoculation rate (the infective 
biting per time unit). Due to the labour-intensive nature 
of collecting such data, risk models commonly use envi-
ronmental and climatic factors to infer the risk because 
malaria transmission is highly dependent on them [1]. 
This systematic review thus focuses on such models of 
risk, examining studies of risk in Southeast Asia with 
regard to their suitability in addressing the challenges of 
malaria elimination in low transmission areas. Factors 
examined include the definition of the risk of malaria 
infection used in each study, the spatial and tempo-
ral granularity, the environmental and climatic factors 

associated with the risk, the analysis techniques used to 
infer risk, and the generalizability of the approach. Fig-
ure  1 provides an overview of the dimensions analysed 
in each paper included in this review. This systematic 
review aims to serve as a guideline for malaria epidemiol-
ogy studies in low-transmission settings.

Methods
Inclusion criteria

• The search terms are contained in the title, abstract, 
or keywords

• Studies focus on utilizing environment and weather 
as predictors of risk

• Studies are conducted in Southeast Asia region [5–7] 
(Thailand, Myanmar, Vietnam, Laos, Cambodia, Phil-
ippines, Malaysia, Indonesia, Singapore, Timor-Leste, 
and Brunei)

• Studies are peer-reviewed articles or proceedings 
papers

• Studies are written in English.

Exclusion criteria

• Studies have irrelevant titles or abstracts. For exam-
ple, this includes studies that mainly explore other 
vector-borne diseases or focus on drug experimenta-
tion or the evaluation of treatment schemes

• Full papers are not accessible
• Studies examine other risk factors, such as behav-

ioural, serological, or genetic material factors, with-
out mentioning environmental factors

• Studies are literature reviews, systematic reviews, or 
protocols

Search terms
The search terms were defined to select studies involv-
ing malaria, environmental and climatic factors, risk, and 
the Southeast Asia region [5–7]. The search used was: 
malaria AND (“risk factors” OR “risk areas” OR “risk”) 
AND (“environment” OR “environmental” OR “envi-
ronmental factors” OR “landcover” OR “land cover” OR 
“land-cover” OR “land covers” OR “land cover types” OR 
“land use” OR “land-use” OR “landscape”) AND (“South-
east Asia” OR Thailand OR Myanmar OR Vietnam OR 
Laos OR Cambodia OR Philippines OR Malaysia OR 
Indonesia OR Singapore OR Timor-Leste OR Brunei). 
The duration of publication was limited to 10  years 
(2010–2020). Four electronic databases were searched: 
PubMed, EMBASE (Medline), Web of Science, and 
Google Scholar.
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Fig. 1 An overview of dimensions of analysis in each paper
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Appraisal of the articles
The estimation of the risk of malaria based on environ-
mental and climatic factors requires a study to select 
(i) a definition of risk of malaria infection, (ii) the envi-
ronmental and climatic variables to use, (iii) statistical 
models, and (iv) quantification approach to explore the 
relationship between environmental and climatic factors, 
and risk. Each of the studies was examined according to 
these criteria.

Results
Search and selection strategy
Figure  2 shows an overview of the search for articles. 
Use of the search terms and inclusion criteria resulted 
in 1297 articles being retrieved. The EndNote software 

(version 10) [8] was used to remove ineligible articles 
based on the exclusion criteria. Examination identified 
200 duplicate articles, which were excluded accord-
ingly. This left 1097 articles for further selection based 
on the titles and the abstracts. A total of 1014 articles 
were removed because they had irrelevant titles or 
irrelevant descriptions in the abstracts. Of the 83 arti-
cles left for further selection, 58 were excluded: four 
were literature reviews, systematic reviews, or research 
protocols, four were conducted outside Southeast Asia, 
21 did not have the full manuscripts accessible, 27 were 
descriptive studies of other factors, such as serological 
factors, and two had different titles when the manu-
scripts were accessed. After the third screening, 25 arti-
cles were left for analysis.

Fig. 2 Search and selection process
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Definition of risk and indicators of malaria transmission
Among the 25 articles selected, nine studies were con-
ducted in Malaysia, four in Thailand, four in China along 

the border with Myanmar, three in Cambodia, and two 
each in Indonesia, Lao PDR, and Vietnam (Table 1). All 
the studies examined directly used an indicator of malaria 

Table 1 Articles categorized by definition of risk

CSS, cross‑sectional survey; PCD, passive case detection; CMB, China‑Myanmar border; TMB, Thailand‑Myanmar border

Categories References Source of data Parasite 
detection 
method

Period of data 
collection

Time resolution Spatial 
resolution

Study site(s)

Prevalence Nixon et al. [9] CSS Microscopy 1 year Yearly reports Household Indonesia

Fornace et al. [13] CSS Microscopy 
and PCR

1 year Yearly reports Village Malaysia/Phil‑
ippines

Ninphanomchai 
et al. [20]

PCD: malaria 
cases

Microscopy 10 years Monthly reports District Thailand

Sluydts et al. [14] CSS PCR 1 year Yearly reports Village Cambodia

Lawpoolsri et al. 
[15]

PCD: malaria 
cases

Microscopy 7 years Monthly reports Village Thailand (TMB)

Zhao et al. [16] PCD: malaria 
cases

Microscopy 5 years Monthly reports Village China (CMB)

Fornace et al. [10] CSS PCR 1 year Yearly reports Household Malaysia

Jeffree et al. [11] CSS Microscopy 1 year Yearly reports Household Malaysia

Okami 
and Kohtake [21]

PCD: malaria 
cases

NA 3 years Monthly reports District Cambodia

Kaewpitoon et al. 
[24]

PCD: malaria 
cases

NA 5 years Yearly reports Province Thailand (TMB)

Sato et al. [17] PCD: malaria 
cases

NA 2 years Yearly reports Village Malaysia

Hasyim et al. [18] PCD: malaria 
cases

RDT and micros‑
copy

1 year Yearly reports Village Indonesia

Mercado et al. 
[12]

CSS Microscopy 3 years Monthly reports Household Thailand (TMB)

Wangdi et al. [22] PCD: malaria 
cases

NA 6 years Yearly reports District Vietnam

Fornace et al. [19] PCD: malaria 
cases

Microscopy 4 years Yearly reports Village Malaysia

Yang et al. [23] PCD: malaria 
cases

NA 1 year Yearly reports District China (CMB)

Xu et al. [25] PCD: malaria 
cases

Microscopy 1 year Yearly reports Village China (CMB)

Inthavong et al. 
[26]

PCD: malaria 
cases

Microscopy 1 month Monthly reports Village Lao PDR

Grigg et al. [27] PCD: malaria 
cases

Microscopy 
and PCR

2 years Yearly reports Village Malaysia

Prevalence 
of infection 
in vector popu‑
lation

Durnez et al. [28] HLC ELISA of mosqui‑
toes from HLC

1 year Biting rate 
by seasons

Village Cambodia

Van Bortel et al. 
[29]

HLC ELISA of mosqui‑
toes from HLC

Multiple‑year 
cross‑sectional

Biting rate 
by years

Village Vietnam

Vector abun‑
dance or others 
as a proxy 
measure

Fornace et al. [30] HLC NA 1 year Biting rate 
by months

Village Malaysia

Ahmad et al. [31] Larval collection NA 1 year Yearly reports Village Malaysia

Zhang et al. [32] CDC light‑traps PCR 1 year Monthly reports Village China (CMB)

Tangena et al. 
[33]

Human‑baited 
double‑net trap

NA 2 years Seasonal reports Village Lao PDR
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transmission in a region as their definition of risk. The 
studies used three indicators to measure the degree of 
malaria transmission: (1) the prevalence of malaria infec-
tion in the human population, (2) the prevalence of the 
parasite in the vector population, and (3) measures of 
vector abundance as proxy measures. The articles corre-
sponding to each approach are discussed in turn. A sum-
mary of the articles is provided in Table 2.

The prevalence of infection in the human population
The prevalence of infection in the human population is 
typically expressed as the percentage of the sampled pop-
ulation infected, commonly detected through microscopy 
and malaria rapid diagnostic test (RDT). A variety of spa-
tial and temporal granularities were used in measuring 
prevalence. In terms of spatial granularity, four articles 
reported the prevalence among households [9–12], seven 
reported the prevalence among villages [13–19], four 
reported the prevalence among districts [20–23], and 
one reported the prevalence among provinces [24]. Three 
studies [25–27] reported the risk in terms of the number 
of cases at the village (hamlet) level without baseline pop-
ulation adjustment. The measures of the risk of infection 
also varied according to temporal granularity. Thirteen 
studies used yearly reports [9–11, 13, 14, 17–19, 22–25, 
27], and six studies used monthly reports [12, 15, 16, 20, 
21, 26]. There was no particular association between the 
spatial and temporal granularities.

The prevalence of infection in the vector population
The entomological inoculation rate (EIR) is computed by 
the number of mosquitoes captured by the human land-
ing catch approach per unit of time, such as per night and 
the distribution of the malaria parasite in the captured 
mosquitoes. Only two studies [28, 29] used human land-
ing catch and extracted DNA from the captured mosqui-
toes to estimate the EIR. Both studies collected the EIR at 
the village level. The study by Durnez et al. [28] reported 
the EIR over 1 year, while the study by Van Bortel et al. 
[29] reported it monthly. Both studies apply enzyme-
linked immunosorbent assay (ELISA) to detect Plasmo-
dium parasites in the captured mosquitoes.

Vector abundance
Studies in this category conducted entomological sur-
veys, such as the collection of larva near households or 
at the fringe of the forests or the collection of mosquitoes 
using standard CDC light traps, human landing catch, or 
cow-baited traps without detecting the parasite. There 
were five articles in this group, and they all reported their 
indicators among villages. Fornace et al. [30] used human 
landing catch to collect the biting rate per night over a 
period of 1 year. Ahmad et al. [31] presented the risk with 
the number of larvae near households collected over 
1  year. Zhang et  al. [32] and Tangena et  al. [33] meas-
ured the abundance of mosquitoes using light traps and 
human-baited double net traps, respectively.

Environmental and climatic variables
In terms of environmental factors, 15 articles used land 
cover types such as types of plantations or crops [16, 
17, 24, 25, 27, 33], hilly or flat areas [13, 16, 18, 25, 28], 
households or forest areas [28, 29, 33], distance to for-
est or river, and the coverage of forest [10, 12, 15, 16, 
19, 32]. Eight collected the characteristics using field 
observations or existing data such as land cover maps 
and surveys [17–19, 24, 25, 27–29], while seven articles 
processed data from satellite images [10, 12, 13, 15, 16, 
32, 33]. Three articles used other variables to charac-
terize the environment. Yang et  al. [23] used rice yield 
per square kilometre from field observation. Fornace 
et  al. [30] used enhanced vegetation Index (EVI), while 
Okami and Kohtake [21] used normalized difference veg-
etation index (NDVI), normalized difference water index 
(NDWI), and topographic wetness index (TWI). The 
number of reviewed articles grouped by environmental 
factors is summarized in Table 3.

In terms of climatic factors, three studies investigated 
only the effect of the climatic factors from field obser-
vations or the reports from weather stations without 
using environmental factors [20, 22]. The other six stud-
ies investigated both climatic and environmental fac-
tors. The climatic factors included humidity [12, 20, 24], 
rainfall [12, 18, 20, 23, 24], temperature [12, 20–24], and 
seasons (wet and dry) [33]. Of all the studies that inves-
tigated the effects of climatic factors, two studies used 
monthly-aggregated data [12, 20], four studies used 
annually-aggregated data [18, 21, 23, 24], and one study 
used seasonally-aggregated data [22]. The summarized 
number of reviewed articles grouped by climatic factors 
is provided in Table 4.

Five studies did not use the characteristics of environ-
mental and climatic factors discussed above. Four men-
tioned mosquito breeding sites near households, such as 
stagnant water sources or livestock near households [9, 

Table 2 Summary of the definition of risk

Definition of risk Number 
of 
studies

References

Risk of infection in the human population 19 [9–27]

Risk of infection in the vector population 2 [28, 29]

Vector abundance or others as a proxy meas‑
ure

4 [30–33]
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11, 26, 31], and all of the studies collected the data using 
field observations. One study explored the locations of 
clusters of infected people along different parts of a river 
[14].

Statistical models
This section describes statistical analysis techniques 
used in the studies to analyse and quantify the relation-
ship between environmental and climatic variables 
and malaria risk. The analyses can be categorized into 
three main groups based on the characteristics of the 
dependent variable (malaria risk). Some studies esti-
mate the prevalence in the population, represented as a 
continuous or discrete dependent variable. Others esti-
mate the individual risk, represented as dichotomous 
malaria outcome dependent variable. Thirteen articles 
adopted techniques to study population-level continuous 
dependent variables. Examples of continuous dependent 
variables include risk score generated by a linear combi-
nation [16] and the aggregated incidence or prevalence 
of malaria-infected cases [15, 17, 18, 23]. The techniques 
include multiple linear regression [24], generalized linear 

regression [21, 26, 33], generalized linear mixture mod-
els [15, 17], generalized linear mixed models with a nega-
tive binomial distribution [19], geographically weighted 
regression (GWR) [18, 23], regression trees (CART) [28], 
multi-criteria decision analysis (MCDA) [16], Bayesian 
hierarchical models [10], and Bayesian models with Inte-
grated Nested Laplace Approximation [30]. Four articles 
applied techniques to investigate population-level dis-
crete dependent variables, such as the integer number 
of malaria cases in different villages or areas. The mod-
els used were negative binomial regression [29], zero-
inflated Poisson (ZIP) regression [22], Poisson regression 
[20], and Pearson’s correlation [12]. Finally, five articles 
estimated the individual risk, represented as dichoto-
mous malaria outcome dependent variable. The tech-
niques included in the studies are logistic regression [11, 
13, 27], hierarchical logistic regression [9], and matched 
univariate and multivariate logistic regression [25]. In 
addition, three studies performed only descriptive analy-
sis of the abundance of mosquitoes [31, 32] and Plasmo-
dium parasites [14].

Aside from the dependent variable, the reviewed arti-
cles can be categorized based on statistical methods. Sev-
enteen articles used generalized linear models (GLMs), 
while eight applied other techniques. A summary of the 
reviewed articles grouped by the statistical models is pro-
vided in Table 5.

Quantifying the relationship between environmental 
and climatic factors and risk
In the previous section, the main components to quantify 
the relationship between the characteristics of environ-
ment and climate and malaria infection were explored. 
Here the focus is on the approaches that the studies 
used to report their results. There are three groups: odds 
ratio or relative risk (RR), regression/correlation, and 
other methods. The reviewed articles grouped by the 

Table 3 Summary of environmental factors

Environmental factors Number of studies References

Types of plantations or crops 6 [16, 17, 24, 25, 27, 33]

Hilly or flat areas 5 [13, 16, 18, 25, 28]

Households or forest areas 3 [28, 29, 33]

Distance to forest or river, and the coverage of forest 6 [10, 12, 15, 16, 19, 32]

Others 5

 Rice yield per square kilometer (RYPSK) 1 [23]

 Enhanced Vegetation Index (EVI) 1 [30]

 Normalized difference vegetation index (NDVI) 1 [21]

 Normalized difference water index (NDWI) 1 [21]

 Topographic wetness index (TWI) 1 [21]

Table 4 Summary of climatic factors

Climatic factors Number of 
studies

References

Humidity indices 3

 Monthly‑aggregated humidity 2 [12, 20]

 Annually‑aggregated humidity 1 [24]

Rainfall indices 5

 Monthly‑aggregated rainfall 2 [12, 20]

 Annually‑aggregated rainfall 3 [18, 23, 24]

Temperature indices 6

 Monthly‑aggregated temperature 2 [12, 20]

 Seasonally‑aggregated temperature 1 [22]

 Annually‑aggregated temperature 3 [21, 23, 24]
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quantification approaches are summarized in Table  6, 
while the summarized characteristics of the reviewed 
articles are provided in Table 7.

Odds ratio and relative risk
Odds ratio (OR) and relative risk (RR) are widely used 
(approximately 40%) in earlier studies [9, 11, 13, 15, 19, 
22, 25–27, 33]. In an epidemiological setting, both indi-
cators measure the association between exposure and an 
outcome. In this review, the exposure to malaria risk is an 
individual staying in presumably high-risk areas, and the 
outcome is that an individual develops malaria infection. 
The relative risk is defined as the ratio between the pro-
portion of the population infected among those exposed 
to risk and the proportion of the population infected 
among those not exposed to risk. The odds ratio (OR) is 
considered an approximation of RR when the outcomes 
of interest are rare [34]. A RR (or OR) of 1.0 means no 

difference in risk (or odds) of infection between groups 
of exposed and non-exposed individuals. An RR (or OR) 
of more than 1.0 indicates an increase in risk (or odds) 
among exposed individuals and vice versa.

Three studies quantified the relationship between 
the number of identified malaria-infected people and 
the presence of mosquito larval habitats near house-
holds, such as stagnant ponds created by rain or running 
streams in forests [9, 11, 26]. Nixon et al. [9] reported a 
reduction in the risk of infection for households located 
farther than 1.6 km from larval habitat areas of Anoph-
eles sundaicus in Indonesia, expressed as an odds ratio of 
0.21 [95% confidence interval (CI): 0.14–0.32]. The pres-
ence of stagnant ponds, a larval habitat of Anopheles bal-
abacensis, resulted in an odds ratio of identified malaria 
cases of 7.3 (95% CI 1.2–43.5) in a study in Malaysia [11], 
while the presence of cattle stalls, a larval habitat areas of 
Anopheles dirus, resulted in an odds ratio of 1.78 (95% CI 

Table 5 Summary of statistical models

Statistical model Number of studies References

Generalized linear model (GLM) 17

 Multiple linear regression 1 [24]

 Generalized linear regression model 3 [21, 26, 33]

 Generalized linear mixture model 2 [15, 17]

 General linearized mixed models with a negative binomial distribution 1 [19]

 Geographically weighted regression (GWR) 2 [18, 23]

 Negative binomial regression 1 [29]

 Zero‑inflated Poisson (ZIP) regression 1 [22]

 Poisson regression 1 [20]

 Logistic regression 3 [11, 13, 27]

 Hierarchical logistic regression models 1 [9]

 Matched univariate and multivariate logistic regression analyses 1 [25]

Other techniques 8

 Regression tree model (CART) 1 [28]

 Pearson’s correlation 1 [12]

 Multi‑criteria decision analysis (MCDA) 1 [16]

 Bayesian model 2 [10, 30]

 Descriptive analysis (surveillance of the abundance of mosquitoes and Plasmodium parasites) 3 [14, 31, 32]

Table 6 Summary of the approaches used to quantify the relationship between environmental and climatic factors and risk

Approaches Number of studies References

Odds ratio and a relative risk 10 [9, 11, 13, 15, 19, 22, 25–27, 33]

Correlation, regression, or other coefficients 8 [12, 16, 18, 20, 21, 23, 24, 30]

Others 7

 The report of malaria prevalence 3 [10, 14, 17]

 The distribution of mosquitoes 2 [31, 32]

 The relative importance index (RI) 1 [28]

 The mean density of biting rate 1 [29]
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0.85–3.74) in a study in Lao PDR [26]. All three studies 
reported that larval habitats found within a distance of 
1.6 km from a household increases the odds of malaria-
infected individuals compared to households located 
outside the range.

Five studies quantified the relationship between the 
number of identified malaria-infected people and the 
observed environment surrounding households, includ-
ing the elevation and the coverage of different land cover 
types such as agricultural vegetation, forest, and villages. 
Two studies conducted in Malaysia showed that the 
high rate of deforestation over the past 5  years resulted 
in an odds ratio of malaria-infected individuals in vil-
lages of 2.22 (95% CI 1.53–2.93) [19]. Consistent with the 
result of another study by Grigg et al. [27], the presence 
of long grass around households, which is considered to 
be evidence of deforestation, resulted in an odds ratio of 
malaria-infected individuals of 2.85 (95% CI 1.25–3.46) 
in Malaysia. Meanwhile, two studies conducted in the 
Philippines and along the China-Myanmar border inves-
tigated malaria transmission by An. balabacensis, An. 
dirus, and Anopheles minimus. These two studies did 
not report the effect of deforestation but emphasized the 
impact of forest coverage and the elevated areas around 
the households. In the Philippines, Fornace et  al. [13] 
reported that households surrounded by more than 30% 
of forested area within 1 km resulted in an OR of 2.4 (95% 
CI 1.29–4.46) compared to households surrounded by 
less than 30% of forested area. The study along the China-
Myanmar border reveals that individuals residing in foot-
hill and moderate-hill households in Myanmar have an 
OR of malaria infection of 5.45 (95% CI 2.52–11.8) and 
42.82 (95% CI 5.13–315.75) compared to people who 
possess households located in upper land or mountain-
ous areas [25].

Another study conducted in Lao PDR broadly inves-
tigated the distribution of Anopheles mosquitoes. The 
study reported that village areas have an OR of 1.95 (95% 
CI 1.60–2.39) in the rainy season and 2.76 (95% CI 2.20–
3.48) in the dry season of capturing Anopheles as com-
pared to secondary forests, which contradicts the other 
studies. On the other hand, capturing Anopheles mos-
quitoes in a rubber plantation resulted in an OR of 0.46 
(95% CI 0.35–0.61) in the rainy season and 0.55 (95% CI 
0.40–0.76) in the dry season, as compared to the second-
ary forest [33]. The author discussed the possibility that 
the outcome could result from the low capture rate of the 
Anopheles mosquitoes, which is considered a common 
issue in low-transmission areas [35, 36].

In addition to the effect of the different land cover 
types, two studies investigated the role of weather in 
malaria transmission. Lawpoolsri et  al. [15] reported an 
OR of malaria infections of 1.05 (95% CI 1.02–1.09) for 

Plasmodium vivax and 1.27 (95% CI 1.23–1.31) for Plas-
modium falciparum as the mean minimum temperature 
increases by 1  °C at the Thai-Myanmar border. In Viet-
nam, Wangdi et  al. [22] reported that an increment in 
maximum temperature by 1  °C increased the infection 
risk of P. falciparum by 3.9% (95% CI 3.5–4.3%) and of P. 
vivax by 1.6% (95% CI 0.9–2.0%) [22].

Regression and correlation
Two approaches have been mainly used to produce the 
quantifiers, the regression approach and others. The 
results are usually shown as weights or coefficients in 
models. There were eight studies in this category [12, 16, 
18, 20, 21, 23, 24, 30].

Five studies applied a group of regression approaches: 
geographically weighted regression (GWR), Poisson 
regression, generalized linear regression, and multivari-
ate regression. Two studies adopted the GWR quanti-
fying the relationship between environmental/climatic 
factors and malaria infections. One study in Indonesia 
reported significant coefficients of altitude, distance from 
forests, and rainfall [18]. Another study on the China-
Myanmar border quantified the effect of the annual aver-
age temperature, annual cumulative rainfall, and rice 
yield per square kilometer on malaria infections [23]. A 
study using the Poisson regression reported the signifi-
cant effect of the maximum/minimum/mean tempera-
ture, rainfall, and humidity on malaria infections [20]. 
Okami and Kohtake adopted a generalized linear regres-
sion model to quantify the relationship between the nor-
malized difference vegetation index (NDVI), normalized 
difference water index (NDWI), topographic wetness 
index (TWI), annual average temperature, and malaria 
reports [21]. Kaewpitoon et al. [24] applied multivariate 
regression to quantify the relationship and found a sig-
nificant association between malaria infections and the 
forest areas and an average annual relative humidity.

In addition to the regression approaches, three stud-
ies applied MCDA and Pearson’s correlation analysis to 
quantify the relationship between environment/climate 
and malaria infections, while the Bayesian model with 
Integrated Nested Laplace Approximation to quantify the 
relationship between environments/weather and the dis-
tribution of mosquitoes. The MDCA quantifies the effect 
of six environmental factors consisting of forest coverage, 
cropland coverage, distance to a water body, elevation, 
distance to urbanized areas, and distance to the road 
[16]. Pearson’s correlation was adopted by Mercado et al. 
[12], who identified four significant environmental and 
climatic factors associated with the risk of malaria infec-
tions, including forest coverage, median temperature 
with a lag time of 1- and 2-month, average temperature 
with a lag time of 1- and 2-month, and average humidity 
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with the lag time of 2- and 3-month. Fornace et al. [30] 
adopted the Bayesian model with Integrated Nested 
Laplace Approximation and found the significant factors 
consisting of EVI and distance to the forest (100 m) from 
a village and the distribution of captured mosquitoes (An. 
balabacensis).

Other methods
Seven studies included in this review used other quanti-
fiers, including the malaria prevalence, the distribution 
of mosquitoes, the relative importance index, and the 
mean biting rate. Fornace et al. [10] reported the preva-
lence of malaria infections within different parts of a vil-
lage. Sato et  al. [17] reported the prevalence of malaria 
infections found in different land use types, such as palm 
oil plantations or rubber plantations. Similarly, Sluydts 
et  al. [14] reported the prevalence of malaria infections 
in several villages without statistical analysis. Two stud-
ies quantified the number of disease-carrier mosquitoes 
found in nearby households. Ahmed et al. [31] reported 
the distribution of mosquitoes, while Zhang et  al. [32] 
explored the diversity of the mosquitoes between villages 
and forest areas using the diversity indices of mosquitoes 
(Simpson’s diversity index and Shannon–Wiener’s index). 
Durnez et  al. [28] adopt the relative importance index 
score of discriminants to rank the importance between 
forests and villages that affect mosquito distribution. Van 
Bortel et al. [29] observed the distribution of mosquitoes 
using the mean biting rate per night.

Discussion
Definition of risk
The World Health Organization (WHO) defines malaria 
risk as the malaria infection rate in a human population 
[37], which was used in 70% of the reviewed studies. 
Estimating the malaria risk based on the infection rate 
captures the disease burden [4, 37]. The reviewed stud-
ies obtained the malaria occurrence in humans based on 
the number of infections from malaria clinics in commu-
nities [15, 16, 18, 27], the regional public health offices 
[12, 17, 19–25], the door-to-door active case detection 
and screening [9, 11, 13, 14, 26, 30], and national disease 
registration systems [38–40]. However, the reports of 
malaria infection from the national disease registration 
systems may be incomplete or delayed, depending on the 
strength of the surveillance system in different countries 
[41].

Approximately 30% of the reviewed studies estimated 
the risk of malaria from the rate of malaria infection 
in combination with entomological determinants of 
malaria, such as estimates of the vector abundance and 
the prevalence of the Plasmodium parasite in Anoph-
eles mosquitoes. The diversity of Anopheles mosquitoes 

is very high, and only a subset of the Genus transmits 
malaria [42, 43]. Thus, it is important to take into account 
the variation in main malaria vectors within the region 
(e.g., An. minimus and Anopheles maculatus in Thailand 
[35] vs. Anopheles leucosphyrus in Malaysia [19]). To pro-
vide a more accurate assessment of malaria risk, the vec-
tor abundance can be supplemented with an estimate of 
the distribution of Plasmodium parasites in mosquitoes 
[44], as represented by EIR, which measures the intensity 
of malaria transmission [45, 46]. Although EIR is inform-
ative, an extremely low number of mosquitos carrying 
malaria parasites in low-transmission areas often hinders 
the acquisition of EIR. Studies conducted in low trans-
mission areas reported that only approximately 1% of 
captured mosquitoes had Plasmodium parasites [35, 36, 
47]. Hence, it is not surprising that only 2% of the stud-
ies included in this review reported EIR as an indicator of 
malaria risk.

In low-transmission settings, a significant contribu-
tor to malaria transmission can be the importation of 
the parasite from high-transmission areas due to human 
mobility [15, 48, 49]. There are two basic mechanisms of 
importation. The importation can be caused by infected 
individuals living in high-transmission areas visiting 
low-transmission areas or by individuals living in low-
transmission areas visiting and becoming infected in a 
high-transmission area and then bringing the infection 
back with them when they return home. To quantify the 
risk of importation, a definition of malaria risk in the 
high transmission area is needed, but somewhat differ-
ent definitions of malaria risk are required for each of the 
two scenarios just enumerated. In the first case, it is suf-
ficient to define the risk of malaria in terms of the preva-
lence in the high-transmission area population since the 
importation is occurring from that population. In the 
second case, a more sophisticated model is needed that 
quantifies the risk based on the time a traveller spends in 
the high-transmission area. Although none of the studies 
reviewed here used such a model, such models do exist in 
the literature. In terms of vector-borne diseases, a math-
ematical model proposed by Massad et  al. [50] quanti-
fies the risk of malaria for travellers to areas with stable 
transmission by considering the duration of exposure and 
season. The individual risk calculation proposed by Stod-
dard et al. [51] and Tatem et al. [52] illustrates the effect 
of the time spent in risk areas on the chance of dengue 
and malaria infection, respectively. Moreover, similar 
time-based models have also been proposed to quantify 
the risk of exposure to environmental hazards [53, 54].

Environmental and climatic variables
Environment and climate play an important role in 
malaria transmission [55–57]. All studies in this review 



Page 14 of 20Sa‑ngamuang et al. Malaria Journal          (2023) 22:339 

included land use or land cover types that contribute to 
the distribution of mosquitoes. Various land cover types 
use used, but forests and villages were the most widely 
used in the studies. Forests or areas dominated by trees, 
including crop fields or agricultural plantations, are asso-
ciated with enhanced malaria transmission because of 
the appropriate temperature, humidity, and breeding 
sites for the mosquitoes [58–60], whereas villages and 
urban areas are associated with lower malaria transmis-
sion [28]. For forest areas, detailed characteristics, such 
as the area of the canopy coverage and the height of the 
trees, are also used [61, 62].

Satellite imagery has long been used in malaria trans-
mission studies [58, 63–65] and provides a variety of spa-
tial and temporal resolutions [66, 67] without additional 
cost. However, utilizing the data involves several steps 
to extract, manipulate, and summarize data and to com-
pute environmental indices [68], which requires expertise 
from epidemiology and geographic information systems 
[66]. Approximately 30% of the reviewed studies used 
satellite imagery to collect data, while the others obtained 
data from relevant local government agencies. Although 
data from both sources are acceptable, there is a need to 
establish a standardized taxonomy of environmental data 
in the studies. Consider the land-cover type forest as an 
example. Broadly, it is considered an area without dwell-
ings [29]. At the same time, it can also be characterized in 
fine-detailed levels as a young, thick, or fallow forest [27]. 
The differences in the definitions of environment data 
limit the possibility of repeatability and reusability of the 
findings from studies.

In addition to land cover, other proxies commonly used 
to determine malaria transmission include the slope, the 
altitude, the distance from the breeding sites of mosqui-
toes (water sources such as a river, paddy field, or forest), 
and a group of vegetation indices. A moderate slope (less 
than 12 degrees) [69] is known to facilitate the forma-
tion of small running streams or ponds that are appro-
priate for mosquitoes to breed in [70]. Approximately 8% 
of studies reviewed included slope in predicting malaria 
risk. The distance from households or villages to high-
risk land cover types such as forests was considered a 
risk factor for malaria infections in 16% of the reviewed 
studies. Likewise, evidence shows that villages or house-
holds found within a range of mosquito breeding sites or 
flight ranges (for example, 1.5 km for An. dirus [71, 72]) 
are prone to be high-transmission areas [73, 74], and the 
use of such distance measurement was observed in 16% 
of the reviewed studies. The vegetation index, which indi-
cates the vegetation state in a study area, has long been 
recognized as relevant to malaria transmission [75–77]. 
Among several available vegetation indices [78], NDVI 
and EVI were widely used in the spatial modelling of 

malaria risk [79, 80] and occurred in 8% of the reviewed 
studies.

Nearly 26% of the reviewed studies directly included 
climatic factors such as precipitation, humidity, and tem-
perature in estimating malaria risk. In addition, the effect 
of climatic factors is often indirectly incorporated into 
the estimation by means of seasonality over the data col-
lection interval [33, 36]. The development of mosquitoes 
from the aquatic to the adult stage is highly correlated 
with rainfall and temperature [56, 81, 82]. The studies 
in this review employed different temporal resolutions 
of the rainfall and temperature ranging from hourly to 
annually. Because emerging from pupae to adult mos-
quito takes approximately 10–14 days, weekly or monthly 
weather reports are commonly used [81, 83–85]. In addi-
tion to disease risk mapping, higher temporal resolu-
tions, such as daily or hourly, are useful in the context of 
mosquito behaviour, such as the time of night with the 
highest biting rate [35].

Human activity and population mobility
Non-environmental factors that are considered to have 
a pronounced effect on the risk of malaria transmission 
are human activity and population mobility. In the agri-
cultural sector, both subsistence and commercial farming 
involve water-harvesting, storage, and irrigation activities 
that support the breeding of mosquitoes that carry the 
malaria parasite [86]. Studies that investigated the risks 
of malaria in rubber plantations [87, 88], paddy fields [86, 
89], fruit orchards [90, 91], and palm oil plantations [27, 
87] have shown a high prevalence of malaria among the 
labour force in the agricultural sector. Nearly 30% of the 
reviewed studies included factors from agricultural set-
tings in their studies.

High population density, urbanization, and poor 
climatic conditions can force hired hands and work-
ers into swidden farming and logging in forested foot-
hills. Singhanetra-Renard [92] and Dev et al. [93] found 
that workers in swidden farming areas have a high risk 
of malaria since they are exposed to Anopheles mosqui-
toes that breed in small reservoirs in forested areas and 
shady clearings on hilly scrub terrain. The taxing physical 
requirements to commute to the workplace in such ter-
rains have often led to increased logging and subsequent 
increase in activities such as foraging, fishing, and hunt-
ing of seasonal wild produce [94, 95]. Human mobility 
originating from such high-risk areas poses a continu-
ous risk of malaria introduction into more urbanized and 
densely populated spaces. Besides activities in agricul-
ture, economic activities in country border areas such as 
smuggling [92], livestock farming and movement [96, 97], 
trading of commodities [98, 99], and seeking refuge [100, 
101] have been taken into account in determining the 



Page 15 of 20Sa‑ngamuang et al. Malaria Journal          (2023) 22:339  

malaria risk, and the results show the association with 
the high rate of malaria infections in populations.

Nearly 30% of the studies included in this review were 
conducted in border areas, and all of them emphasized 
the neglected transmission of malaria caused by human 
mobility. Nonetheless, only one study examined the 
relationship between mobility and malaria transmission 
by looking at the relationship between human mobility 
and the distribution of mosquitoes [30]. Human move-
ment contributes to the circulation of malaria parasites 
from high-risk areas into areas where local transmission 
is unsustainable. The calculated risk for non-immune 
hosts staying longer than 4 months in a high-risk urban 
setting during peak transmission is only about 0.5% per 
visit [50]; however, non-immunes who carried out activi-
ties in or across the high-risk forest and border areas 
have been the subjects of large-scale seasonal outbreaks 
[92, 102, 103]. Imported infections are often the reason 
for frequent malaria clusters along international borders 
of Southeast Asian countries, as most of these countries 
share long land borders with a typical topography con-
sisting of mountain ranges and rivers [104].

Failure to consider population movement contributed 
to the failure of malaria eradication campaigns in the 
1950s and 1960s [105]. Similarly, cross-border malaria 
hinders countries from achieving malaria elimination 
[106]. For the latter, consider Thailand as an example. 
Although most of Thailand is malaria-free, it has yet 
to achieve malaria elimination since the border region 
shared with Myanmar continues to have endemic malaria 
[15, 48, 49]. Due to the diversity of human mobility pat-
terns at different spatial scales [107], acquiring mobil-
ity data is a challenging task. Quantification of human 
mobility has been carried out through epidemiological 
surveillance data [108], parasite genetic data [109], self-
reported travel surveys [99], interviews [108, 110], GPS 
trackers [111], and anonymized mobile phone data [112]. 
Surveys and interviews are the principal methods for 
identifying imported cases, but they can be unreliable 
and limited due to the scope of memory bias [113]. On 
the other hand, tracking personalized positions to high 
temporal and spatial resolution with mobile GPS data is 
non-trivial. In fact, malaria risk may increase as a result 
of a combination of different forms of mobility, as well as 
other factors unrelated to population movements [114, 
115].

Statistical models
In this review, 70% of the studies used types of general-
ized linear models (GLM), which are designed to gener-
alize linear regression models to investigate non-linear 
relationships between dependent and independent vari-
ables [116]. GLMs also accept a variety of distributions 

that describe the dependent variables, including Poisson, 
binomial, and normal, using link functions. Dependent 
variables in GLMs can be of two types: continuous and 
discrete. GLMs are easily interpretable and considered 
flexible as they facilitate the addition of proxies such as 
socioeconomic factors [117], human mobility indicators 
[48], seasonality [50], and the use of prevention meth-
ods [118] to predict malaria transmission. As the predic-
tors can be incorporated easily, GLM models are prone 
to include highly correlated independent variables in the 
models, such as NDVI and rainfall [119, 120] or NDVI 
and land surface temperature [121, 122]. The presence of 
multicollinearity between independent variables can lead 
to an inaccurate estimation of the relationship between 
the independent and dependent variables [123, 124]. 
Crucially, predictors must be examined for collinear-
ity, and six studies performed such a test in the variable 
selection process [15, 18, 23, 26–28]. It is also important 
to note that when an independent variable that changes 
over time is included, GLMs are known to be sensitive 
to autocorrelation in errors [125, 126]. Although it is 
essential to explore the effect of autocorrelation, only one 
study in this review conducted the autocorrelation analy-
sis [20].

A variety of spatial resolutions are used to measure the 
intensity of malaria transmission, including at the provin-
cial [24, 127], regional [21, 128], and village levels [14, 17, 
27]. Nearly 50% of studies that used a GLM in this review 
adopted the highest spatial resolution at the village level 
to investigate malaria transmission in low-endemic set-
tings. Meanwhile, the rest of the studies that used a GLM 
utilized a low-temporal resolution for weather (annual) 
with a low spatial resolution (regional). These studies 
tended to conduct longitudinal data collection to capture 
the effect of seasonality on malaria transmission, which is 
pointed out as a limitation in previous studies [108, 110, 
113].

In addition to the GLMs, 9% of the reviewed studies 
employed approaches that originated from Bayesian sta-
tistics. The Bayesian approach estimates the posterior 
distribution using priors and the observed data described 
by the likelihood function [129]. The prior distribu-
tion in malaria transmission is often determined based 
on expert opinion [130, 131] or inferred from previous 
work [30, 132]. Although a weakly informative prior is 
acceptable [129], an inappropriate prior has an effect on 
the goodness of fit between the prior distribution and 
the observed data [133]. There is no standard approach 
to choosing an appropriate prior, but an alternative is 
to use the prior predictive p-value [134] or Bayes fac-
tor [135] to measure the goodness of fit of the selected 
prior distribution. The posterior distribution is presented 
with the mean and its credible interval. The accuracy of 
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the posterior distribution is determined by comparing 
the similarity between the posterior distribution and the 
observed data distribution [136] or posterior predictive 
p-value [137]. Two studies in this review did not utilize 
such techniques for prior and posterior distributions. 
One possible reason could be the scarcity of available 
observed data, such as the biting rate of mosquitos [30] 
and the prevalence of malaria [10] in low-transmission 
areas. Like the regression approaches, studies with the 
Bayesian approach need to exclude the unnecessary inde-
pendent variables with proper techniques such as a col-
linearity test [123, 124].

Other approaches to investigate the relationship 
between environment, weather, and the risk of malaria 
infection include the use of simple correlation analy-
sis and MCDA [138, 139]. Correlation is widely used to 
explore the relationship between malaria prevalence and 
the environment due to its simplicity and ease of inter-
pretation [84, 140, 141]. In addition to serving as the 
main analysis, correlation can be utilized in data explo-
ration and variable selection. Although MCDA requires 
the elicitation of expert opinion and evidence from previ-
ous work, it has the potential to serve as a guideline when 
field data is absent.

Issues in low‑transmission areas
In low-transmission areas, asymptomatic malaria infec-
tions obstruct achieving zero local malaria transmission. 
Despite the typically small number of asymptomatic 
malaria infections, they can cause malaria outbreaks 
in near-elimination areas [142]. Asymptomatic infec-
tions become an issue because the standard approach 
to reporting malaria infection comes from passive case 
detection (by microscopy or rapid diagnosis test-RDT), 
which misses asymptomatic cases [142]. This review 
shows that the majority of the studies examined use 
reports from passive cases detection [15–22, 24, 25, 27]. 
In contrast, active surveillance requires utilizing sophis-
ticated techniques such as molecular screening methods 
or conducting follow-up longitudinal studies with a rela-
tively large sample of the population [143–145].

In low-transmission settings, two neighboring areas 
can have different malaria transmission rates [47, 146]. 
An area with high malaria transmission can be consid-
ered a source and its counterpart a sink [102]. Since 
hotspots can be relatively localized in low transmission 
areas, data collection should be carried out with high 
spatial and temporal granularity. This review shows that 
the highest granularity of data collection on malaria 
prevalence is at the household level [9–12]. However, 
most studies investigate the relationship between envi-
ronmental and meteorological factors and malaria 
transmission collected at the village level [13–19, 

25–29, 31–33]. The environmental and climatic factors 
are collected either from satellite images or weather 
stations because these data collection approaches 
require less manpower and budget than conducting 
observations in the actual areas of interest [66]. These 
approaches to data collection are the only solution in 
some situations where the areas of interest are distant 
from each other or almost impossible to reach, such 
as villages in dense forests or villages in neighboring 
countries [147–149].

Conclusion
There is no standard definition of the risk of malaria, 
but most studies in this review adopted the malaria 
infection rate in humans. Furthermore, malaria trans-
mission highly depends on environmental and climatic 
factors in several ways, yet neither general guidelines 
for collecting the environmental and climate variables 
nor the general definition are shared among the studies. 
Most reviewed studies utilized GLMs to predict risk 
based on these factors due to the simplicity and flexibil-
ity of the models, yet did not perform the collinearity 
test before fitting the GLM models. Most of the stud-
ies were carried out in either a cross-sectional design 
or case–control studies, and most utilized OR to report 
the relationship between exposure to risk and malaria 
prevalence, which unlike relative risk is not a probabil-
ity [150, 151] and thus can be difficult to interpret in 
terms of risk.

In near-elimination settings such as Southeast Asia, 
malaria proceeds to decline, but the region has encoun-
tered a number of challenges to its elimination. One chal-
lenge is the detection of asymptomatic infections, which 
is infeasible on a population scale due to the lack of 
resources. Routine monitoring of malaria infections over 
a long period in border areas can also be tedious due to 
the high level of cross-border mobility, which is difficult 
to monitor in Southeast Asia because of the large border 
areas without tight control. Accurately identifying hot-
spots of malaria infection is also extremely crucial. When 
combined with human mobility, sources of infection can 
be revealed. However, regular observation is challeng-
ing in border areas, for example, when a destination is 
deep in forests or outside a country. An important com-
ponent in quantifying risk is an estimate of the popula-
tion density of Anopheles mosquitoes. However, current 
approaches, such as larval counts and the use of light 
traps, are too labour-intensive to use on a routine, wide-
spread basis. These challenges imply the necessity for 
new approaches to monitoring, prediction, and response 
to provide more rapidly actionable information to guide 
national malaria control programmes.
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Recommendations
Following from the observations above, a number of 
recommendations are derived as guidelines for future 
studies.

• A more standardized definition of malaria risk 
would help in comparing and sharing results.

• Given the lack of standards, an explicit description 
of environmental and climatic variables used in a 
study could serve as a guideline for further studies.

• The collinearity test should be performed before fit-
ting the GLM models since minimizing the exist-
ence of collinearity in the models improves the 
results and their interpretation.

• Unlike the Relative Risk (RR), Odds Ratio (OR) 
is not a probability and thus both the OR and RR 
should be provided in reporting results.

• Research and development are needed into new 
approaches to monitoring and prediction, such has 
integration of human mobility in malaria predic-
tion [52, 152], mosquito monitoring using acoustic 
sensors [153] or images [154], and novel prediction 
models [149, 155].

This review has described the definition of risk and 
explored the characteristics of environmental and cli-
matic factors used for its prediction in studies in South-
east Asia. Many of the findings are applicable to other 
low-transmission settings and could serve as a guide-
line for further studies of malaria in other regions.
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