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Abstract

The source of malaria vector populations that re-establish at the beginning of the rainy season is still unclear

yet knowledge of mosquito behaviour is required to effectively institute control measures. Alternative hypotheses
like aestivation, local refugia, migration between neighbouring sites, and long-distance migration (LDM) are stipulated
to support mosquito persistence. This work assessed the malaria vector persistence dynamics and examined vari-
ous studies done on vector survival via these hypotheses; aestivation, local refugia, local or long-distance migration
across sub-Saharan Africa, explored a range of methods used, ecological parameters and highlighted the knowledge
trends and gaps. The results about a particular persistence mechanism that supports the re-establishment of Anoph-
eles gambiae, Anopheles coluzzii or Anopheles arabiensis in sub-Saharan Africa were not conclusive given that each
method used had its limitations. For example, the Mark-Release-Recapture (MRR) method whose challenge is a low
recapture rate that affects its accuracy, and the use of time series analysis through field collections whose challenge
is the uncertainty about whether not finding mosquitoes during the dry season is a weakness of the conventional
sampling methods used or because of hidden shelters. This, therefore, calls for further investigations emphasiz-

ing the use of ecological experiments under controlled conditions in the laboratory or semi-field, and genetic
approaches, as they are known to complement each other. This review, therefore, unveils and assesses the uncertain-
ties that influence the different malaria vector persistence mechanisms and provides recommendations for future
studies.
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Background
Malaria vector populations exhibit strong seasonal fluc-
tuations in abundance and are present in large numbers
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malaria mosquito population dynamics are: (1) local mos-
quito populations experience dry season bottlenecks and
are sustained by a few hidden survivors (aestivation) [4];
(2) local populations become extinct and few migrants
from neighbouring areas, where permanent breeding
occurs, recolonize the area at the beginning of the rainy
season (local migration) [5, 6]; (3) the local population
gets extinct during the dry season and is recolonized by
long-distance migrants from stable areas (long-distance
migration, LDM) [7]; and (4) large populations survive
locally but are hidden with respect to sampling methods
(also known as hidden or local refugia) [8, 9].

Despite the findings at hand from different studies, the
source of malaria mosquito populations that re-establish
at the start of a rainy season remains a mystery mostly
because getting direct evidence of adults in their hidden
shelters or even recapturing marked mosquitoes around
the release sites is difficult [4, 10]. Genetic studies have
been conducted to test whether populations undergo
annual dry season bottlenecks [11, 12], but have not
yielded conclusive results. This could be because of the
type of loci that are targeted, using an insufficient num-
ber of loci that negatively impacts the statistical power,
unavailability of mosquito samples with longer alternat-
ing time series, using limited sample collection methods
(which are not representative of both endophilic and
exophilic fractions of a particular population to account
for behavioural heterogeneity and aid in estimating total
effective population size (Ne)), and no knowledge of how
selection affects allele frequency changes and conse-
quently Ne estimates [2, 11-13].

Here, it is essential to distinguish between the per-
sistence mechanisms used by malaria vector species in
either the Equatorial or Sahelian regions. It is important
to note that in the Equatorial region, there could always
be surface water available nearly all year round or the dry
season could be short relative to their life cycle (e.g. less
than 2 months). Therefore, mosquito persistence mecha-
nisms might not be required, or could be by local migra-
tion or local refugia. In the Sahelian region on the other
hand, there is never surface water in vast areas span-
ning the long dry season that usually lasts between 3 and
8 months.

The exact persistence mechanisms used by malaria
vector species in sub-Saharan Africa (Fig. 1) is a conun-
drum, given that the four hypotheses explain the rapid
mosquito rebounds at the beginning of each wet season
[4, 12, 14]. Various studies concerned with which popu-
lations contribute to the early rainy season malaria mos-
quito rebounds have been carried out, and in this review,
their strengths and weaknesses will be accessed based on
the study design, the methods used and whether the con-
clusions support the results, and thereafter highlight the
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gaps that remain therein (Table 1). This review, therefore,
focuses on the uncertainties of the persistence mecha-
nisms utilized by malaria vectors across sub-Saharan
Africa.

Anopheline mosquitoes in sub-Saharan Africa

In sub-Saharan Africa, the main groups of malaria vec-
tors are An. gambiae, An. coluzzii, An. arabiensis, and
Anopheles funestus [15, 16], which are genetically dis-
tinct [17]. Anopheles gambiae and An. coluzzii were once
considered as one species until recently. They remain as
part of the An. gambiae species complex alongside An.
arabiensis, hence are morphologically inseparable. It is
worth mentioning An. funestus, which belongs to its own
group of species [18—20]. The four are amongst the most
efficient, broadly distributed, and dominant malaria vec-
tors in sub-Saharan Africa. These species inhabit diverse
environments that include areas where the water that is
required for larval development is absent for more than
4 months [4]. Their bionomics vary according to species
and in several aspects such as biting rates, duration of
their gonotrophic cycles, fecundity, survival, and devel-
opment of immature and adult stages. Anopheles arabi-
ensis lives in dry savannah environments but occupies
similar larval habitats to An. gambiae [21], thus, occurs
in sympatry [19] with their relative abundance depend-
ent on local ecological conditions [22]. It is said that
“An. gambiae is predominantly anthropophagic and
endophilic, and together with its longevity, has a higher
vectorial capacity than other species of the An. gambiae
species complex” [22].

The An. gambiae species complex is the major malaria
vector characterized by endophagy (preferences for
obtaining blood meals indoors), anthropophily (blood
meals from humans), and endophily (indoor resting fol-
lowing blood meals) [3]. Its distribution spans most of
sub-Saharan Africa and can survive under a wide range
of ecological, geographical and seasonal conditions [22].
Anopheles coluzzii has high ecological plasticity; thus, it
can exploit different habitats [23, 24] and has an oppor-
tunistic host-seeking behaviour [25].

However, An. arabiensis is known for its ecopheno-
typic plasticity and is predominantly exophagic (feeds
outdoors) and exophilic (rests outdoors) [22]. Because of
its ability to develop in residual pools of water in dry riv-
erbeds, it can survive arid conditions and in turn rapidly
become abundant at the onset of rains [22].

The biology of malaria mosquito persistence

The Amnopheline mosquito populations withstand dry
conditions which could last three to 8 months [26],
equivalent to several generations of their life time [27].
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Fig. 1 Schematic diagram showing the different persistence mechanisms responsible for the early rainy season malaria mosquito rebounds
across sub-Saharan Africa. The four hypotheses could be responsible for population rebounds of the An. gambiae species complex at the start

of each rainy season

The hypotheses that explain malaria mosquito persis-
tence mechanisms are aestivation [4], persistence at local
refugia [8], local migration [28] and LDM [29].

Aestivation is a repeated state of summer dormancy
that constitutes suppressed reproduction and growth in
order to ensure extended mosquito survival during the
harsh conditions of the dry season [4]. Local refugia pop-
ulations are those that have the ability to survive under
adverse conditions, but remain hidden with respect to
conventional sampling methods and can only be found by
actively searching for them [8]. Local migration involves
mosquito movement from adjacent areas, while LDM is
the movement of mosquitoes to favourable areas from
further fields, potentially hundreds of kilometres away
and is predominantly wind-aided [29].

The mechanisms by which An. gambiae species com-
plex persist throughout the dry season vary from the
Equatorial to Sahelian region across sub-Saharan Africa
[30]. Unlike the Sahelian region, the Equatorial region

experiences a milder dry season during which some
larval sites remain available within a 5-10 km radius
[8, 31]. These few but constantly available larval sites
during the dry season are known to act as a strong
selection force against aestivation as the persistence
mechanism used [32]. Instead, refugia populations are
said to occupy distinct hidden habitats during the dry
season, which sites could be difficult to detect using
conventional sampling methods [8].

Distinguishing between whether the lack of direct
evidence for aestivating females during the dry sea-
son could be because of the weakness of conventional
sampling methods or total absence is very difficult [8].
However, the difference between aestivating mosqui-
toes and those maintained as refugia is that aestivating
females become gonotrophically discordant, and could
either fail to develop eggs after taking a blood meal
[33], or because they lack suitable oviposition sites, do
not lay eggs, but instead, dissolve them and use that as
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their source of energy [34], while refugia populations
continue to breed. It is thought that they can still be
found by actively searching for them [8].

It is believed that aestivation is predominantly acti-
vated by the absence of water at all the stages of malaria
mosquito growth [35]. The eggs of Anopheles mosqui-
toes cannot survive more than 15 days on dry soil [36],
therefore, with several months without rain or surface
water, it provides the most possible route for survival
[35]. During the dry season, malaria vectors generally
become susceptible to water loss caused by increased
evaporation rates through their spiracles and cuticles
[37]. This water loss is linked to reduced survival and
oviposition [38], reduced nutritional reserves and egg
production [39] and changes in macrogeographic and
microgeographic distributions [40].

Dehydration stress has over a period of time resulted
in genetic alterations and behavioural adaptations that
interact with mosquito physiology, survival and distribu-
tion [40]. This could imply that these species experience
fitness trade-offs deduced from the fact that, the 2La
inversion is associated with higher desiccation resistance
and is high in frequency (higher fitness traits) among Axn.
gambiae and An. coluzzii populations found in arid areas;
however, this is rare or even absent in areas where water
is readily available [40]. The 2La chromosomal inversions
are reported to drive the cuticle thickness and cuticular
hydrocarbon (CHC) composition that are responsible for
the desiccation-resistant phenotype [40]. Within the An.
gambiae species complex, dry season metabolic charac-
teristics are evidently similar but show that suppression
in metabolic and reproductive processes support the
adaptive potential to survive by changing their cuticular,
metabolic and behavioural traits [41].

In a genome-wide laboratory-based survey of An. gam-
biae species complex populations, 33 An. gambiae desic-
cation-responsive genes that exhibited reduced transcript
accumulation when mosquitoes were exposed to the des-
iccation treatment and 50 desiccation-responsive genes
with known metabolism-related functions altered in
response to dehydration were identified [42]. The results
from this survey also showed that the number of genes
expressed is dependent on the duration of desiccation
stress [42]. Anopheles gambiae and An. coluzzii in par-
ticular are known to have the 2La and 2Rb chromosomal
inversions [40], which could be associated with aestiva-
tion, body size [43] and dry season survival mechanisms
[44].

In addition to 2La and 2Rb chromosomal inversions,
the An. gambiae species complex has other inversions
and combinations (2Rc, 2Rd and 2Ru) that are said to
be non-randomly correlated with adaptations to arid
conditions [45]. These inversions are controlled by the
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environment and could contribute to local adaptation,
habitat range, and desiccation tolerance [40, 46, 47],
and may also influence some of the variations in com-
petence for Plasmodium [47]. Inversion polymorphisms
among local populations could temporally change
depending on the seasonal dynamics [48], which
explains how various molecular forms of An. gambiae
species complex develop acclimatization to dry season
and increased survival [41].

However, apart from the genetics, because of the high
rates of evaporation through their respiratory spiracles
and cuticle, mosquitoes are predisposed to water loss
which they could deal with by employing several behav-
ioural adaptations, and altering their body size, metabo-
lism and cuticular hydrocarbon composition [37, 39,
49, 50]. Phenotypic differences such as adult body size,
reproductive output and longevity could indicate that
malaria mosquito molecular forms are adapted to spe-
cific niches [24].

The adult Anopheles mosquito has a lifespan of less
than a month however, some studies indicate that they
could survive for over 3 months during the dry season
[4, 7, 35, 51]. Results from the studies that have been
carried out in the An. gambiae species complex on how
they survive for more than 4 months of harsh dry season
conditions have showed that compared to the wet season;
there was a dramatic extension of lifespan [4, 52], they
were reproductively suppressed in a state of gonotrophic
dissociation [33]; had a 70% reduction in reproduction
(between the wet and dry season, the oviposition rate
dropped from 70 to 20%, the mean number of eggs per
female reduced from 173 to 101 and gonotrophic disso-
ciation increased from 5 to 45%) [51], an 80% reduction
in flight activity and the metabolic rate was highest dur-
ing the dry season [53].

A key feature of aestivation is that it involves a pre-
programmed suite of physiological changes that occur in
response to one or more external cues such as changes in
photoperiods and high temperatures that predict future
environmental changes and trigger certain changes in the
mosquito to enable it to survive [54]. For mosquitoes in
the Sahelian region, the primary forces known to drive
aestivation are (1) the absence of surface waters for lar-
val site development (2) temperature fluctuations (3)
changes in relative humidity which could confine flight to
certain parts of the night [32]. This means that mosquito
behavioural changes in selecting suitable microhabitats,
suitable times of activity and rest may actually contrib-
ute to physiological changes and not necessarily rely on
them [32]. Other behavioural changes that are said to
occur during the dry season include modification of their
feeding habits by switching from human blood to other
sources, such as flower nectar and woody-plant juices
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[55], which are low in protein and could in part be the
reason for gonotrophic dissociation that is observed in
aestivating adults [32, 51, 53].

In addition to that, when anticipating the coming dry
season, An. coluzzii have been observed to nearly disap-
pear from villages approximately one month before the
larval sites dry up [4, 14, 51, 53].The work by Huestis and
Lehmann [32] hypothesises that behavioural changes in
selecting suitable microhabitats in shelters and suitable
periods of activity and rest, play a large role in comple-
menting physiological changes, rather than relying on
them completely, as is the case for winter diapause.

This can also be supported by the results from the
Magombedze et al. [27] study in which two selection bot-
tlenecks that drive phenotypic plasticity occurred: at the
beginning of a dry season and selected for mosquitoes
able to survive the long dry season, and at the start of the
new wet season. These results were comparable to other
studies that suggest that malaria mosquitoes in the Sahel
region do not use inherited traits (mosquito adaptation)
to survive ever-changing environmental conditions, but
instead employ a phenotypic switch [56-58].

When reproductive depression was assessed in An.
coluzzii populations from the Sahel region, the results
showed marked seasonality in the reproductive physi-
ology, a drop in response to oviposition, and increased
gonotrophic dissociation, which are signs that support
survival throughout the dry season by aestivation [51].
Depressed reproduction is, therefore, the most funda-
mental feature of diapause in adult insects [51], which
generally means that for aestivating mosquitoes, during
the long dry spell, resources are diverted from reproduc-
tion to survival [51].

The key changes noted to happen during the dry sea-
son are (1) reduced reproduction [51], (2) reduced flight
activity [53], (3) increased tolerance to desiccation attrib-
uted to changes in cuticular hydrocarbons [26], and (4)
metabolic and protein changes [59].

The major Anopheles gambiae species complex malaria
vectors are said to undergo these changes only in
response to certain external stimuli or cues such as
changes in photoperiod, temperature and moisture avail-
ability among others that predict the beginning of an
environmental change [32]. The cues that have predic-
tors are better suited to initiate aestivation while those
without may instead reinforce or maintain it [32]. For
example, changes in moisture content (disappearance
of larval sites) are a result rather than predictor of a dry
season while changes in photoperiod are a predictor
that a change in day lengths has occurred and, there-
fore, initiate aestivation [32]. Case in point was when the
responses of An. coluzzii and An. arabiensis to changes in
photoperiod and temperature were compared under dry
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season conditions, results showed that longevity, body
size and total lipids of An. coluzzii increased, while those
for An. arabiensis decreased, a signal that An. coluzzii
entered the diapause initiation phase [60].

So, given that An. gambiae species complex are highly
sensitive to temporary oviposition-site deprivation, even
dry spells that last just a few days during the wet sea-
son can reduce reproductive success [61]. This means
that their physiology modifies the effect of oviposition-
site deprivation on their reproductive output [61], and
because oviposition is largely controlled by water avail-
ability with contribution from humidity and rainfall [62],
not finding suitable larval sites may be an indication used
by mosquitoes to switch from their reproductive state to
reproductive depression during the dry season [8, 28, 51,
60].

The wind-aided LDM is the other mechanism by which
An. gambiae species complex persist through the dry sea-
son. So far, studies show that LDM takes place in both
Equatorial and Sahelian regions as a means of survival for
members of this species [6, 29].

However, from earlier studies carried out in the Sahel,
there was scepticism on whether the surge in population
was really an indication of migrants from the neighbour-
ing areas or whether they were hidden in the same local-
ity [4]. This was because the neighbouring villages could
not serve as a source of migrants, and given that there
were low densities of adults throughout the whole area,
the Sahelian villages were isolated [4, 14] with studies
at that time pointing to the fact that mosquito dispersal
over a distance of 2—-3 kilometres was unusual [63, 64].
However, an extensive aerial sampling experiment of
mosquitoes at 40-290 metres above ground level con-
firmed the occurrence of windborne migrations among
malaria vectors and was estimated to span tens to hun-
dreds of kilometres in a single night [29].

The same study collected 23 An. coluzzii, but only 1 An.
gambiae among the 235 Anopheline mosquito migrants,
something that contradicted the initial predictions that
An. coluzzii solely survive the long dry spell by aestivating
locally and not through migration in the Sahelian region
[4, 7]. Anopheles coluzzii could, therefore, survive the
long dry spells in the Sahel region by aestivation accom-
panied by long-distance migration that is said to take
place in the late rainy season, otherwise, without migra-
tion, the small Sahelian population that survives the dry
season through aestivation would become locally extinct
[12] because of the unpredicted dry spells that occur dur-
ing the rainy season [65—-67]. This attests to the complex-
ity of species, presenting two strategies that seemed to
most as mutually exclusive.

Following wind-borne migration, the ability of each
migrant to arrive at a favourable habitat is influenced by
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changing windspeeds and direction together with the
distribution of habitat patches [68]. Migrants could be
displaced over hundreds of kilometres in one night, and
this may happen for several days [69], depending on the
flight capacity and the flight period [68]. The key predic-
tors of long-distance migration include; (1) extinction of
the local population during the dry season followed by an
abundant rise in population by migrants from areas with
favourable climatic conditions that maintain larval sites,
(2) the genetic make-up of migrants that arrive at from
other areas at the start of the rainy season will be distinct
from that of the previous dry season, and (3) when popu-
lations are sampled at different time points, large genetic
drift is expected, a sign that continuous reproduction has
been taking place [12]. In genetic studies, these predic-
tors make it possible to evaluate and distinguish between
the different explanations for dry season survival.

Approaches to studying malaria mosquito dry season
survival and population rebounds

Two approaches, direct (ecological) and indirect (genetic)
are used to study the seasonal dynamics of malaria vec-
tors [13]. The direct approach mainly utilizes the mark-
release-recapture (MRR) experiments [13], while the
indirect approach relies on the genetic information from
the samples collected. These include genetic diversity,
population differentiation parameters, and temporal
variation in allele frequencies, as a measure of genetic
drift and Ne [2, 12]. Results from indirect and direct
approaches complement each other but are also usu-
ally different because the population size varies greatly
through the year with estimates from the direct approach
made when the population is near its maximum while
that of the indirect approach is the Ne estimate which
represents some sort of yearly average (harmonic mean)
[63]. Several studies using direct or indirect approaches
to investigate the different mosquito persistence mecha-
nisms across sub-Saharan Africa have been carried out
and are summarized in Table 1 with more detailed infor-
mation for each study included in (see Additional file 1:
Table S1).

Computer simulations and dynamic models in population
genetics to study mosquito persistence mechanisms
Malaria mosquito population genetic studies provide
information about gene exchange between populations
which is beneficial in making conclusions about the dis-
persal patterns of malaria vectors and in answering other
ecological questions [70]. These patterns make it possible
to predict vector competence, whose knowledge is criti-
cal in vector control, especially in understanding malaria
vector genetic population structure and barriers to gene
flow [70].
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Computer simulations assist to assess the potential
validity of the different hypotheses, determine which
areas to consider for experimental studies, establish
expected genetic signatures under different hypotheses
and guide experimental work [71]. The use of dynamic
models (used to simulate trajectories of change under dif-
ferent scenarios) is still in its infancy and is very impor-
tant in highlighting several parameters such as changing
temperature, mosquito dispersal, humidity, and mosquito
size among others that contribute to vector dynamics
observed in laboratory settings, semi-field conditions
and the field [72]. The use of forward-time simulations
(known to start from an initial population and follows
its evolution from generation to generation) in popula-
tion genetics to determine the origin of early wet season
rebounds is promising and could be the most effective
way to test between hypotheses [73]. Forward-time pop-
ulation genetic simulations play an important role in gen-
erating and testing evolutionary hypotheses that would
be difficult to attain in laboratory settings because of the
complexity of the process often known to be burdensome
or even expensive [74].

The increase in population genomic data over the years
has resulted in the use of more complex analyses using
advanced simulation models [75]. These simulations are
important for gaining an understanding of specific data-
sets used and in assessing and validating biological mod-
els [76], while evaluating the sampling properties of any
statistics used on genome-wide association studies to
compare the performance of different methods used [77].
Simulations usually allow for the inclusion of stochas-
ticity in a natural way to investigate the entomological
parameters relating to dry season ecology and movement
behaviour which are still unclear in malaria vector spe-
cies [71].

Discussion

Over the years, several studies on the dry season per-
sistence of An. gambiae species complex in sub-Saharan
Africa have been carried out in the field, laboratory,
and in-silico and have generated vast information and
insights. How malaria vectors survive the long dry sea-
son remains unclear but could be associated with locality
and niche-specific influences. Results from a study done
on An. coluzzii populations in the Sahel and Riparian
areas showed a difference in the aestivation phenotypes
within and between the two environments, which signi-
fies that there is a possibility that various populations of
the same species have specific dry season survival strat-
egies that depend on the strength and duration of the
dry season in that locality [51]. That could be the reason
why An. coluzzii populations of similar geographic ori-
gins undergo persistent local adaptations, which are also
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anticipated to be influenced by specific microhabitats [7,
26]. These adaptations may also be responsible for the
fact that An. gambiae, a highly anthropophilic species has
become both anthropophilic and/or endophilic [37].

Whereas some studies provide evidence for aestivation,
local refugia, local or LDM, repeating similar studies
usually does not replicate the results [4], thus, the need to
handle each geographical area independently because dif-
ferent populations may present different dry-season sur-
vival strategies depending on the strength and duration
of the dry season. A study by Aboud et al. [78] in which
An. arabiensis populations in South Sudan exhibited two
phenotypic forms, one which was large and heavily mel-
anized, while the other had the usual characteristics as
found in other African settings (normal colour and size),
results showed that the melanic form survived through-
out the long dry season by partial aestivation [78], and
was similar to populations found in An. arabiensis popu-
lations in Senegal [79]. The normal form, however, was
inferred to persist by LDM [14], which was further con-
firmed by Atieli et al. [6]. Therefore, more studies that are
geared towards comparing An. gambiae species complex
populations from various environments especially where
they occur in sympatry are important.

Using a combination of approaches, both direct and
indirect in tandem because they complement each other
could be a more credible way to not only understand dry
season persistence mechanisms in the An. gambiae spe-
cies complex, but also provide more insights into malaria
vector population dynamics and how they affect vector
control implementation. The marked mosquito recap-
tured at the start of the new rainy season (An. coluzzii)
[4], and the An. arabiensis mosquitoes found at the end of
the dry season [33] could either have survived by aestiva-
tion or as local refugia. Therefore, using both direct and
indirect approaches in these studies could have resulted
in more concrete and informed conclusions. Also, stud-
ies in genetic evolution and phenotypic plasticity com-
bined with demography will assist in making predictions
about population persistence in a changing environment.
Population genetics using malaria mosquito genetic data
will create a better understanding of the extent to which
mosquitoes at the start of a rainy season are genetically
distant from the previous season’s populations [12].

Further studies could consider sequencing the whole
Anopheles genome of mosquito populations from vari-
ous areas in sub-Saharan Africa collected over several
seasons to further elucidate the balance between lon-
gevity, reproduction and migration of the three spe-
cies. Developing a modelling framework that could
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be extended into a spatial meta-population could also
allow an assessment of the relative roles of different
mosquito persistence mechanisms together with their
environmental triggers. This will assist in predicting
which genetic signatures are responsible for the differ-
ent persistence mechanisms since the possible views
that could explain each of them as mentioned earlier if
tested using population genetic structure and tempo-
ral stability of genetic composition within populations
have different expected outcomes [13]. Key parameters
such as within-sample genetic diversity, between-sam-
ple genetic distance and temporal variance in allele fre-
quency [12] could assist in making predictions based
on each of the persistence mechanisms considered.

Using forward-time simulations in population
genetics to determine the origin of early rainy season
rebounds is promising and could be an effective way to
test which persistence mechanism is more readily used
by the three species. Forward-time population genetic
simulations track complete ancestral information and
are significant for deriving and testing evolutionary
hypotheses that could be burdensome or expensive
[74].

Conclusions

Following studies to date, it still remains unclear which
particular persistence mechanism(s) are responsible for
the survival of each of the three species known to con-
tribute the most to the malaria burden in sub-Saharan
Africa. Using combined approaches (both ecological and
genetic) is promising and has the added advantage of pro-
viding results that complement each other and provide
more insights. This should reinforce the inexplicit theo-
ries that surround malaria vector population rebounds at
the start of every rainy season. The clarity in this subject
matter should also inform the effectiveness of the already
existing and new malaria vector control tools which may
include the use of genetically modified mosquitoes which
constitute a new set of tools said to either replace malaria
vector populations with introduced genes for refracto-
riness to limit malaria transmission or disrupt fertility
genes and thus lower mosquito numbers to achieve vec-
tor population suppression.

Abbreviations
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MRR  Mark release recapture
Ne Effective population size
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