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Abstract 

Background Malaria continues to pose a significant health threat. Rapid identification of malaria infections 
and the deployment of active surveillance tools are crucial for achieving malaria elimination in regions where malaria 
is endemic, such as certain areas of Thailand. In this study, an anomaly detection system is introduced as an early 
warning mechanism for potential malaria outbreaks in countries like Thailand.

Methods Unsupervised clustering‑based, and time series‑based anomaly detection algorithms are developed 
and compared to identify abnormal malaria activity in Thailand. Additionally, a user interface tailored for anomaly 
detection is designed, enabling the Thai malaria surveillance team to utilize these algorithms and visualize regions 
exhibiting unusual malaria patterns.

Results Nine distinct anomaly detection algorithms we developed. Their efficacy in pinpointing verified outbreaks 
was assessed using malaria case data from Thailand spanning 2012 to 2022. The historical average threshold‑based 
anomaly detection method triggered three times fewer alerts, while correctly identifying the same number of verified 
outbreaks when compared to the current method used in Thailand. A limitation of this analysis is the small number 
of verified outbreaks; further consultation with the Division of Vector Borne Disease could help identify more verified 
outbreaks. The developed dashboard, designed specifically for anomaly detection, allows disease surveillance profes‑
sionals to easily identify and visualize unusual malaria activity at a provincial level across Thailand.

Conclusion An enhanced early warning system is proposed to bolster malaria elimination efforts for countries 
with a similar malaria profile to Thailand. The developed anomaly detection algorithms, after thorough compari‑
son, have been optimized for integration with the current malaria surveillance infrastructure. An anomaly detection 
dashboard for Thailand is built and supports early detection of abnormal malaria activity. In summary, the proposed 
early warning system enhances the identification process for provinces at risk of outbreaks and offers easy integration 
with Thailand’s established malaria surveillance framework.
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Background
Malaria remains a life-threatening and preventable dis-
ease in many parts of the world [1]. While significant 
progress in reducing Thai malaria cases has occurred 
in the past two decades, continued efforts are neces-
sary to achieve elimination [2, 3]. The Operational Plan 
2017–2021, aligned with Thailand’s National Malaria 
Elimination Strategy 2017–2026, emphasizes the need to 
enhance rapid identification of infections and implement 
timely and active surveillance and response measures to 
prevent further transmission [4]. The Division of Vector-
Borne Disease (DVBD) leads the national malaria pro-
gramme and is responsible for implementing surveillance 
initiatives in Thailand [3]. The DVBD, operating under 
the Department of Disease Control of the Ministry of 
Public Health, facilitated and oversees real-time aggrega-
tion of electronic malaria case data [4, 5]. The electronic 
malaria information system (eMIS) was developed by the 
Center of Excellence for Biomedical and Public Health 
Informatics (BIOPHICS), Faculty of Tropical Medicine 
at Mahidol University aiming to replace paper-based 
malaria reporting with near-real-time electronic report-
ing [5]. BIOPHICS currently hosts all eMIS data, acting 
as the ongoing technical system support for the ministry 
[5].

With the development of eMIS, Thailand has con-
ducted the 1-3-7 strategy to improve malaria elimina-
tion [6]. This strategy involves notifying each malaria 
case within 1  day of testing positive for malaria, classi-
fying the case within 3 days, and completing a response 
within 7  days [6]. Responses involve case investigation 
and the deployment of appropriate interventions for 
vector control [4]. Depending on the case classification, 
interventions include blood sampling, distributing insec-
ticide-treated bed nets, indoor residual spraying, and 
health education [4]. Seasonal malaria chemoprevention 
(SMC) has been used as preventative treatment in areas 
with seasonal transmission and require adaptable thresh-
olds to define disease patterns over time and space. These 
thresholds are used as a surveillance method to identify 
suitable areas for SMC and require input from health 
districts as they are often challenging to define [7]. Over-
all, these methods require a broad workforce, high data 
quality, continued leadership, and are costly. To success-
fully eliminate malaria in Thailand, it is crucial to incor-
porate well supported community-based health workers 
and establish an affordable and efficient detection sys-
tem. This system should quickly identify outbreaks in 
their early stages, be adaptable to various health districts’ 
needs, and reduce the malaria burden more rapidly in the 
remaining localized high transmission foci [8].

Early warning systems give advance warnings of 
impending epidemics and play a crucial role in the 

malaria surveillance program overseen by the DVBD 
[9, 10]. Malaria outbreaks are defined as higher than 
usual malaria case activity in a specific area. Currently, 
the warning system relies on a 3 year median approach, 
where an alert is triggered if weekly malaria cases exceed 
the 3  year median of weekly cases from previous years 
and prompt investigation by the DVBD [11]. The pub-
licly available online dashboard for the Thailand Malaria 
Elimination Programme (https:// malar ia. ddc. moph. go. 
th/ malar iaR10/ index_ newve rsion. php), provides infor-
mation on provincial case counts, weekly case counts, 
3 year median thresholds, and the implementation of the 
1-3-7 strategy throughout Thailand. This tool provides 
general case visualization across Thailand, but it does not 
support identification of unusual malaria case activity 
across Thailand [11]. The development of improved early 
warning mechanisms and a robust dashboard is needed 
to optimize the response time and allocation of resources 
to areas with impending epidemics and to support effec-
tive implementation of preventive measures.

Anomaly detection is used to discover unexpected or 
rate events in data streams and can be applied to health 
data to identify outliers in a system [12]. Anomaly detec-
tion algorithms are dynamic and can include a combina-
tion of statistical and machine learning approaches and 
threshold-based methods that detect highly abnormal 
activities in the data. Examples of uses are fraud detec-
tion in insurance and banking, intrusion detection of 
computer networks, and medical informatics for dis-
order detection [12]. Three types of machine learning-
based anomaly detection algorithms are supervised, 
unsupervised, and semi-supervised [12]. While no single 
anomaly detection method is universally effective, sev-
eral approaches are suited for time series anomaly detec-
tion. These approaches include predictive confidence 
levels, statistical profiling, clustering, and density-based 
profiling [12–16]. Anomaly detection presents a promis-
ing approach in disease detection. Previous studies have 
explored the application of density-based anomaly detec-
tion algorithms to health data including heart disease, 
diabetes, and hepatitis [17, 18].

Similarly, the use of unsupervised anomaly detec-
tion methods have been used to discover implausible 
electronic health records in cancer registries [19] and 
adverse health conditions for people living dementia 
using sensor-base data [20]. In a study exploring the use 
of unsupervised anomaly detection for disease surveil-
lance, Brazilian Amazon malaria surveillance data is used 
as a case study for early detection of outbreaks [21]. As 
anomaly detection algorithms are a promising tech-
nique for early identification of abnormal malaria activ-
ity, the use of both unsupervised clustering and time 
series-based anomaly detection methods are explored for 

https://malaria.ddc.moph.go.th/malariaR10/index_newversion.php
https://malaria.ddc.moph.go.th/malariaR10/index_newversion.php


Page 3 of 12Srimokla et al. Malaria Journal           (2024) 23:11  

endemic malaria environments similar to Thailand. This 
study focuses on using anomaly detection algorithms 
as a method to strengthen malaria surveillance systems 
with Thailand as an example setting. The early detection 
of impending outbreaks can be integrated with the exist-
ing eMIS and enhance the current 1-3-7 strategy to effec-
tively respond to any anomaly identification within 7 days 
using appropriate interventions [4].

The aim of this research is to propose an early detec-
tion system to support the malaria elimination programs 
in countries where malaria is endemic, similar to Thai-
land. Additionally, the aim is to improve methods for 
early detection of malaria in areas with impending out-
breaks. To achieve these aims and using Thailand as an 
example setting, the main research objectives are:

1. Develop anomaly detection algorithms and early 
detection thresholds that are suitable for malaria data 
in Thailand.

2. Compare the developed algorithms to Thailand’s cur-
rent early warning threshold.

3. Develop a prototype user interface for Thai public 
health professionals that supports early identification 
of outbreaks and enables focused attention on anom-
alous areas.

Methods
To support the objectives of this study, the methods are 
separated into five main sections: data, algorithms, algo-
rithm comparison, code structure, and user interface.

Data
The data for this analysis was provided by the Minis-
try of Public Health and used under a research protocol 
approved by the Ethics Committee of the Faculty of Trop-
ical Medicine, Mahidol University, Bangkok. This study 
encompasses all 77 provinces of Thailand (see Additional 
file 1), a region characterized by its warm, humid tropi-
cal climate and seasonal monsoon winds [22]. Thailand 
has an annual cycle of wet and dry seasons with a con-
centration of rainfall during the wet season [23]. Thailand 
is located in Southeast Asia and is bordered by Myanmar 
in the west, Laos in the north, Cambodia in the east, and 
Malaysia in the south [24]. The data contains Thailand 
malaria cases reported daily from 2012 to 2022 for all 
Thai provinces with personal identifiers excluded from 
the analyses. The data contains 31 variables including the 
blood draw date, nationality, sex, age, province, province 
ID, subdistrict, species of malaria, border type, occupa-
tion, and treatment for 180256 observations of malaria 
cases. All province names are translated into English 
based on their provincial ID (details in Additional file 1). 
The data is transformed into incidence data based on the 

case counts per date and then grouped based on prov-
ince for further analysis. Depending on the method, the 
case data was aggregated either daily, weekly, or monthly 
(see Additional file 11 for more information about aggre-
gation interval for each method). Initial visualization of 
the data is shown (see Fig.  1 and Additional file  2) and 
can be further visualized in the analytics tab of the final 
dashboard: https:// moru. shiny apps. io/ Malar ia_ Anoma 
ly_ Detec tion_ App/.

As climate and environmental factors could be one of 
the primary factors driving malaria transmission [25–27], 
daily precipitation and temperature data is incorporated 
in an unsupervised clustering method with daily malaria 
cases. From both the temperature and precipitation data-
sets, measurements from central Thailand are used for 
analysis on all provinces as the temperature and precipi-
tation does not vary significantly across Thailand. The 
daily precipitation data for Thailand was extracted from 
Temperature and Precipitation Gridded Data for Global 
and Regional Domains Derived from In-situ and Satellite 
Observations from the Copernicus Climate Data Store 
[28]. Similarly, the daily temperature data for Thailand 
was extracted from the Berkeley Earth’s Global Tem-
perature Gridded Data [29]. The daily precipitation and 
temperature data are added to the daily malaria incidence 
data frame based on date and scaled to be comparable 
to the malaria case data. The multivariate scaled data is 
then used as an input into density-based unsupervised 
clustering function DBSCAN. Unsupervised clustering 
approaches are further described below and in Addi-
tional file 11.

Anomaly detection algorithms
Two main types of anomaly detection algorithms devel-
oped are clustering-based methods and time series-based 
methods. Each method will be used to identify anoma-
lous or unusual malaria activity. The performance for 
each type of anomaly detection algorithm is compared 
in the following section. Table 1 shows the methods used 
for this analysis.

Unsupervised clustering approaches create measure-
ments between different elements and cluster them base 
on their similarity without requiring training data [12]. 
Anomalous observations are labelled when they have a 
high distance to existing clusters or have a lower density 
when compare to other clusters [12]. Anomaly detection 
algorithms based on unsupervised clustering approaches 
include unsupervised time-series clustering, unsuper-
vised density-base clustering with the malaria case data, 
and unsupervised density-based clustering with malaria 
case data, precipitation data, and temperature data (see 
Additional file 11 for detailed descriptions).

https://moru.shinyapps.io/Malaria_Anomaly_Detection_App/
https://moru.shinyapps.io/Malaria_Anomaly_Detection_App/
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Time series-based anomaly detection approaches 
analyse the data based on a sliding window and at a 
specified time frame. These methods are able capture 
the change in malaria cases for an evolving time series 
and can involve the comparison of cumulative cases, 
mean cases, and standard deviation along the time 
series. Time series-based anomaly detection algorithms 
include statistical profiling, predictive confidence inter-
val, weekly and monthly malaria case comparisons, 
rolling historical averages, and weekly 3  year median 
case comparisons (see Additional file  11 for detailed 
descriptions).

As an initial test, early detection methods are applied 
and visualized at a provincial level to see if unusual case 
activity can be identified using this dataset. All methods 
can be selected in the dropdown menu in the analytics 
tab of the final dashboard (https:// moru. shiny apps. io/ 
Malar ia_ Anoma ly_ Detec tion_ App/) and are grouped by 
clustering-based (orange) and time series-based (blue) 
(see Fig. 3).

Algorithm validation and comparison
To validate the algorithms, additional literature review, 
the online Thailand Malaria Elimination Program tool, 
and consultation with BIOPHICS provided information 
on dates and provinces where malaria outbreaks were 
previously reported. To match available malaria data, 
outbreaks reported from 2012 to 2022 were selected. The 
two main goals for the validation stage are to identify the 
number of outbreaks caught for each method up to two 
weeks prior to the verified outbreak date, and the number 
of alerts triggered by each method.

From literature, the Thailand Malaria Elimination 
Program online tool, and consultation with BIOPHICS, 
7 outbreak dates were identified. 6 of the 7 outbreaks 
were reported at a provincial level while 1 (2017 Kan-
chanaburi) was reported at a subdistrict level. Reported 
outbreaks are generally clustered along provinces bor-
dering Laos, Cambodia, and Myanmar and could have 
resulted from factors like migrant movement, limited 

Fig. 1 Total Malaria Cases Across Thailand from 2012 to 2022. The malaria case counts across Thailand are shown from 2012 to 2022. The verified 
outbreak dates, found in literature, are highlighted in orange and provide information on the province name and the reference used for each 
outbreak. These outbreak dates are used to compare and validate the anomaly detection algorithms presented in this paper

Table 1 Methods used for anomaly detection and their 
references

1 Two main unsupervised clustering techniques are used for this method: time-
series clustering with tsclust [37] and density-based clustering using DBSCAN
2 This method was developed based on a combination of techniques from 
statistical profiling and weekly case comparison

Method References

Statistical profiling [12, 38–42]

Predictive confidence interval [42–45]

Unsupervised  clustering1 [12, 16, 37, 46, 47]

Weekly case comparison [4] 06/01/2024 06:55:00

Monthly case comparison [48]

Rolling historical  average2

Weekly 3 year median [11]

https://moru.shinyapps.io/Malaria_Anomaly_Detection_App/
https://moru.shinyapps.io/Malaria_Anomaly_Detection_App/
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access to malaria prevention and diagnostics, inadequate 
monitoring measures, dense forest regions, and political 
and social unrest [30]. The summary of outbreak dates 
are shown in Table 2 (see Additional file 12 for detailed 
descriptions).

All anomaly detection methods are run through all 
the provinces. Each province and method were assessed 
to determine if it could generate warnings within a two-
week window leading up to the outbreak date. The exact 
outbreak date, shown as a peak in cases, is found using 
the Thailand Malaria Elimination Programme online 
tool and compared to estimates reported in literature. 
The function summed the total real outbreak dates each 
method caught and the total number of alerts each 
method produced. The pseudocode for validating and 
comparing various anomaly detection methods can be 
found in Additional file 13 and the final result from test-
ing is shown in the analytics tab of the final dashboard.

In addition to reporting verified outbreaks, the total 
number of alerts reported from each method are also 
tracked. Each anomaly detection method is applied to all 
the malaria data from 2012 to 2022 and reports the num-
ber of anomalies or alerts each method triggers. The pur-
pose of tracking these alerts is to ensure that the method 
used for anomaly detection is not highly sensitive to 
every irregularity found in the case data and reporting is 
done for only highly anomalous activity.

Code structure
The code is structured to conduct anomaly analysis at a 
provincial level, with a user-defined method, time frame, 
and malaria species (see Additional file  10). The data is 
converted into incidence data based on the resolution of 
analysis and grouped at a provincial level. The resolution 
of analysis can be increased to smaller regions; however, 
this will be more computationally intensive as increasing 
the resolution to the subdistrict level will take 45  times 

as long to run. After the user-specified method is applied 
to each province, the daily anomalous activity is reported 
for the time frame defined and stored in an outer data 
frame. The final activity data frame is used for further 
analysis and is connected to visualizations in the user 
interface in the form of a map highlighting anomalous 
provinces.

Interface
The user interface is designed for the DVBD surveillance 
team with consultation through BIOPHICS. For easy vis-
ualization and prototyping, a wireframe of the inter-face 
was developed using Canva [31]. An R Shiny application 
was developed to test and debug functions, integrating 
visualization tools like raster, rworldmap, and ggplot to 
highlight anomalous activities [32–35].

The final application was created using R Shiny and 
bs4Dash and has three main pages [36]. The first page 
describes the project and the algorithms available for 
analysis. The second page provides a weekly summary, 
including information on provinces with detected anom-
alies. The third page allows the user to conduct further 
analysis by inputting the time frame, method, and species 
of malaria used for analysis. Two main visualizations are 
updated every time a new analysis is initiated: one high-
lighting provinces with anomalies detected and another 
showing the standardized incidence ratio of malaria 
incidence across Thailand. Additional information such 
as trend lines, percentage of provinces with anomalies 
detected, and names of provinces with unusual activity 
are also included.

Results
Algorithm development and validation
A total of 9 anomaly detection algorithms were created 
and initially tested and visualized to confirm correctly 
implemented alerts were produced for observations 
exceeding thresholds or bands defining anomalous activ-
ity for the Tak province (see Fig. 2 and Additional file 3). 
From this initial test, anomalous observations are distin-
guished from normal malaria case activity.

After developing and validating the anomaly detection 
algorithms in the Tak province, tested each method was 
tested across all provinces to evaluate their effectiveness 
in identifying confirmed outbreaks. These results are 
shown in Table 3. In this table, the ✘ symbol shows that 
the method used did not trigger anomalous alerts at least 
two weeks before the verified outbreak and the ✔ symbol 
shows that the method used triggered anomalous alerts at 
least two weeks before this verified outbreak. The sensi-
tivity for each method is calculated by taking the number 
of verified outbreaks found over the total number of veri-
fied outbreaks. In the analysis using time-series methods, 

Table 2 Outbreak dates reported in literature from 2012 and 
2022

1 Additional analysis of case data shows large spike and from consultation with 
BIOPHICS

Date Reported Province Reference

2014 Ubon ratchathani [49]

2015 Ubon ratchathani [49]

2016 Yala [50]

2017 Si Sa Ket [48] 
06/01/2024 
06:55:00

2017 Kanchanaburi [50]

2022 Kanchanaburi [50]1

2022 Tak [51]1
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varying levels of sensitivity was observed. Specifically, for 
the monthly case comparison, statistical profiling, and 
predictive confidence interval methods, the sensitivi-
ties were 0/7, 1/7, and 3/7, respectively. In contrast, the 
historical average, weekly case comparison, and weekly 
3 year median methods demonstrated a higher sensitiv-
ity, each achieving a rate of 6/7. However, for the cluster-
ing-based methods, the sensitivity was consistently found 
to be 0/7. The highest number of verified anomalies 

found was 6 out of the 7. Methods able to identify 6 out-
breaks were historical average, weekly case counts, and 
the weekly 3 year median method. Of these three meth-
ods, the historical average method produced the lowest 
number of alerts (see Additional file 4 for visualizations 
of true anomalies caught using the historical average and 
DBSCAN method applied to Ubon Ratchathani). Of the 9 
methods, 4 methods were unable to identify the labelled 
outbreaks. These methods are density-based profiling 

Fig. 2 Visual results from testing algorithms with the Tak Province. Anomaly detection algorithms tested with Tak provincial malaria data from 2012 
to 2022. a the statistical profiling method shows 3 standard deviation bands. Observations falling outside the 3 standard deviation bands are 
classified as anomalous. b the predictive confidence interval method is used to create 3 standard deviation bands from the mean standard error. 
Observations falling outside the 3 standard deviation band are classified as anomalous. c the unsupervised method using DBSCAN is used to cluster 
observations. Observations in cluster 0 (smallest cluster) are defined as anomalous while observations in cluster 1 are not. d the weekly cumulative 
case comparison method is used to compare observations. Weeks where cumulative cases are higher than the previous year’s weekly cases (blue) 
are classified as anomalous
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with DBSCAN, density-based profiling with DBSCAN 
including temperature and precipitation data, unsuper-
vised clustering with tsclust [37], and monthly case com-
parison. The method reporting the most alerts at 32630 
is the weekly 3 year median while the method reporting 
the lowest number of alerts at 5 is density-based profiling 
with DBSCAN.

Code structure and functionalization
After the algorithms’ performance were tested, they were 
converted into functions with easily adaptable outbreak 
definitions. Data handling and filtering functions are 
created to allow user input into the analysis. Additional 
functions were created to run anomaly detection algo-
rithms across all provinces based on user-defined inputs, 
such as malaria species and time period for analysis, and 
to store the anomaly status of each province for map vis-
ualization. The code structure (see Fig. 2) was achieved. 
All the code files can also be found here: https:// github. 
com/ mghDi ssert ation/ malar ia_ anoma ly_ detect.

User interface
To aid in developing the optimal design and layout for 
the final dashboard, a wireframe was developed (refer 
to Additional file  5), specifically tailored for anomaly 
detection. An intermediate application (refer to Addi-
tional file  5) was used to validate code functionality, 
offering a visual depiction of provinces marked for 
unusual malaria activity. The dashboard’s design was 
refined based on feedback from BIOPHICS and fellow 
researchers, ensuring effective anomaly detection and 
granting users the flexibility to choose essential param-
eters. The final dashboard contains three main pages 
with information on methods, generated visuals, and 
method-specific accuracy. The aim is to allow users to 
easily compare different methods, species, and time 
frames used for analysis. The final dashboard, as shown 
in Fig.  3 and Additional file  5, will feature the best 
method on its summary page for DVBD’s use. The final 
application is hosted here: https:// moru. shiny apps. io/ 
Malar ia_ Anoma ly_ Detec tion_ App/.

Table 3 Results from method comparison

1 Temperature and precipitation included in analysis
2 Baseline method used in Thailand (BIOPHICS)
3 Ubon: Ubon Ratchathani, SSK: SI Sa Ket, KCN: Kanchanaburi
4 Total anomalies repored for each method when applied to all malaria cases between 2012 and 2022
5 Symbol showing that this method was not able to trigger anomaly alerts at least 14 days before this verified outbreak observation
6 Symbol showing that this method was able to trigger anomaly alerts at least 14 days before this verified outbreak observation

Method Ubon (2014)3 Ubon (2015)3 Yala (2016) SSK (2017)3 KCN (2017)3 KCN (2022) Tak (2022) Verified 
Anomalies 
detected (%)

Total 
 Reported4

Statistical 
profiling

✘5 ✘ ✔6 ✘ ✘ ✘ ✘ 1 (14%) 882

Predictive 
confidence 
interval

✔ ✘ ✔ ✔ ✘ ✘ ✘ 3 (43%) 2356

Unsupervised 
clustering

✘ ✘ ✘ ✘ ✘ ✘ ✘ 0 (0%) 75

Density‑based 
profiling

✘ ✘ ✘ ✘ ✘ ✘ ✘ 0 (0%) 5

Density‑based 
profiling 
w/T&P1

✘ ✘ ✘ ✘ ✘ ✘ ✘ 0 (0%) 452

Historical 
average

✘ ✔ ✔ ✔ ✔ ✔ ✔ 6 (86%) 10875

Weekly Case 
previous year

✔ ✘ ✔ ✔ ✔ ✔ ✔ 6 (86%) 30449

Monthly case 
4 years

✘ ✘ ✘ ✘ ✘ ✘ ✘ 0 (0%) 5577

Weekly 3 year 
 median2

✔ ✔ ✔ ✔ ✘ ✔ ✔ 6 (86%) 32630

https://github.com/mghDissertation/malaria_anomaly_detect
https://github.com/mghDissertation/malaria_anomaly_detect
https://moru.shinyapps.io/Malaria_Anomaly_Detection_App/
https://moru.shinyapps.io/Malaria_Anomaly_Detection_App/
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Discussion
The creation of effective anomaly detection algorithms 
combined with a user inter-face tailored for anomaly 
detection supports progress towards the Thailand 
Malaria Elimination Programme.

Algorithms
Through the evaluation of algorithms, it was found that 
three methods—historical average, weekly case compari-
son, and weekly 3  year median—successfully identified 
86% of the labeled outbreaks. However, these methods 

varied significantly in their alert efficiency, with the 
total number of alerts generated to verified anomalies 
detected being 1813, 5075, and 5438, respectively. As 
observed in Table 3, these three methods detected 6 out 
of 7 outbreaks. The historical average method was able 
to detect all verified outbreak dates except for the 2014 
Ubon Rachathani outbreak. Given that the dataset begins 
in 2012 and the historical average method requires data 
from the previous 3  years, the alert threshold value 
might have been set higher than intended, preventing 
the alert from being triggered. In contrast, the weekly 

(a) General structure of the analysis page

(b) User selects parameters for analysis (c) Outputs the anomaly map. This plot highlights provinces with anomalies in
red and lists their names in a data table

(d) Outputs the standardised incidence ratio map.

Fig. 3 Final user interface. Output from the “Analytics” tab showing maps, anomalous province names, and case trends in the application https:// 
moru. shiny apps. io/ Malar ia_ Anoma ly_ Detec tion_ App/. The user selects the species, method, and time period of interest to run the analysis. 
The methods are grouped by machine‑learning‑based (orange) and threshold or statistical‑based (blue). After the investigation is complete, 
the anomaly map, the standardized incidence ratio map, and the anomalous provincial names are shown. Additional map descriptions are shown 
in the map descriptions tab

https://moru.shinyapps.io/Malaria_Anomaly_Detection_App/
https://moru.shinyapps.io/Malaria_Anomaly_Detection_App/
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case comparison method identified all verified outbreaks 
except for the 2015 Ubon Ratchathani observation. The 
weekly case comparison method relies on the weekly 
cumulative counts from the previous year and because 
an outbreak was reported in Ubon Ratchathani from the 
previous year, a slight decrease in case values would not 
have been able to trigger an alert for this method even 
if an outbreak was declared. Similarly, the 3 year median 
method identified all outbreaks except for the one in 
Kanchanaburi in 2017. Since this outbreak was reported 
at a subdistrict level, it was more difficult to catch these 
irregularities when the analysis was completed at a pro-
vincial level. Other methods that failed to detect this sub-
district outbreak include statistical profiling, predictive 
confidence interval, unsupervised clustering with tsclust 
package [37], density-based profiling using only case 
data, density-based profiling combining case data with 
temperature and precipitation data, and monthly case 
comparison. Although the currently implemented 3 year 
median method identified 6 out of 7 actual outbreaks, it 
generated approximately three times as many predictions 
(or total reported alerts) compared to the historical aver-
age method. The primary objective of these algorithms 
is to guide the DVBD on which areas to prioritize, espe-
cially in resource-limited scenarios, to pre-emptively 
control potential outbreaks. In practice, a low false posi-
tive rate combined with a high true positive rate is crucial 
for DVBD to effectively respond to outbreaks.

The statistical profiling method detected 14.2% of the 
labelled outbreaks, while the predictive confidence inter-
val method detected 43%. Despite having fewer alerts, 
the statistical profiling and predictive confidence inter-
val methods reported a ratio of the total number of alerts 
generated to verified anomalies detected of 882 and 785. 
For instance, the statistical profiling method identified 
anomalies solely for the 2016 Yala outbreak. In contrast, 
the predictive confidence interval method detected the 
2016 Yala outbreak and also the 2017 Si Sa Ket and 2014 
Ubon Ratchathani outbreaks. By collaborating further 
with the DVBD, acceptable false positive rates and sen-
sitivity levels can be determined. This will help in refin-
ing the customization of warning methods for specific 
health districts. In the context of clustering-based meth-
ods, this analysis found that techniques such as clustering 
with tsclust [37] and DBSCAN using malaria case data 
were ineffective in identifying any labelled outbreak data. 
This was also the case when combining malaria case data 
with precipitation and temperature metrics. While these 
methods were tested at a provincial level, their outcomes 
might vary when implemented at district or village levels.

Compared to time series-based methods, clustering-
based anomaly detection methods showed lower accu-
racy in identifying verified outbreaks when tested with 

malaria data from 2012 to 2022. Table 3 shows how dif-
ferent methods were able to capture different anomalous 
activities.

Through further visualization of these methods applied 
to the Kanchanaburi province (Additional file  14) it 
becomes evident why some methods are able to capture 
more anomalies than others. The historical average and 
statistical profiling use daily malaria cases for analy-
sis and can capture seasonal changes in malaria cases 
more than the predictive confidence interval method. 
The statistical profiling method was only able to cap-
ture one verified anomaly since the threshold use to 
classify anomalous observations was much higher than 
other methods using daily malaria cases. As a result, less 
anomalies are reported, and fewer verified outbreaks are 
caught. Compared to the statistical profiling method and 
the predictive confidence interval method, the histori-
cal average method has a lower threshold that outlines 
the general shape of the daily cases and as a result, more 
anomalies are reported, and more verified outbreaks are 
caught early. This is similarly observed in the weekly case 
comparison and weekly 3  year median methods. These 
two methods use weekly malaria cases and can capture 
malaria seasonality while creating a threshold which is 
high enough that not all observations are anomalous, 
but low enough to capture weeks with higher than usual 
malaria cases. As a result, these two methods had a bet-
ter performance than other methods. Similar to the sta-
tistical profiling method, the monthly case comparison 
method is capable of identifying seasonal malaria trends. 
However, its threshold is significantly higher than the 
observed data, attributable to the elevated averages of 
malaria cases from the preceding 4 years. As a result, the 
monthly case comparison method captured few anoma-
lies and was not able to capture any of the verified out-
breaks. Figure  2 shows that clustering-based methods 
defined observations at large malaria peaks as anoma-
lous. These methods were not able to capture anomalies 
between peaks and for smaller malaria waves that pre-
ceded larger ones.

A combination of these methods can be used to cap-
ture different types of anomalies across countries with a 
similar malaria profile to Thailand and should be tested 
with more verified outbreak dates. In this context, the 
historical average method outperformed others due to 
its high accuracy in identifying outbreaks and its low 
false positive rate. Observations deemed anomalous 
are categorized based on threshold definitions. These 
thresholds can be adjusted to match the tolerance levels 
set by health districts, comparable to the criteria used 
for SMC area identification. Depending on the applica-
tion and scenario, tailored algorithm thresholds can be 
designed based on health district needs. Easy integration 
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is possible as all methods and code are functionalized 
and adaptable to requirements set by different health 
districts.

User interface
The final dashboard, tailored specifically for anomaly 
detection, has been designed to be user-friendly, allowing 
disease surveillance professionals to easily navigate and 
interact with the detection algorithms. It offers tools for 
visualizing anomalies and user-defined analysis param-
eters, and it facilitates in-depth analysis of atypical pat-
terns in malaria data.

The dashboard application has three main pages. The 
‘Introduction’ page presents the application’s objectives 
and methodologies. The ‘Summary’ page provides weekly 
insights on anomalous provinces and malaria cases, cat-
egorized by border types, based on a default method 
determined by the health district.

The analysis page allows users to expand their analysis 
through user-defined methods, malaria species, and time 
frames. Its core aim is to showcase how different meth-
ods and time frames affect provincial alerts. Method 
options are grouped into clustering-based (orange) or 
time series-based (blue) in a dropdown methods section 
in the analysis page of the dashboard.

The analysis page provides step-by-step guidance, high-
lighting anomalous provinces on a map and showing 
standardized malaria incidence across Thailand. After 
each analysis, anomalous provinces are listed, and an 
interactive widget displays malaria cases over time per 
province.

Limitations
Certain limitations were present in this study. Specific 
statistical methods relied on literature to classify anom-
alies as values surpassing 3 standard deviations above 
the mean. As each province follows its own protocol for 
defining malaria out-breaks and resource allocation, col-
laborating with different health districts to establish out-
break thresholds is essential to identify the most suitable 
method for them. This cooperative approach, combined 
with user feedback for both the algorithms and user 
interface, can help identify the most suitable anomaly 
detection method for each province. For the dataset used, 
observations started in 2012 and ended in May 2022, and 
lacks real-time integration with the malaria reporting 
database. Although functions are compatible with raw 
data, real-time integration should be conducted. While 
this analysis focused developing a proof-of-concept on a 
provincial level for efficiency, it could be extended to sub-
district or subvillage scales to represent the surveillance 
resolution implemented in the 1-3-7 program. More out-
break data points and working directly with the DVBD 

surveillance team would improve validation, algorithm 
sensitivity, and the final interface.

Conclusions
An enhanced early warning system is proposed to bolster 
malaria elimination efforts in regions where malaria is 
endemic, such as certain areas of Thailand. Clustering-
based and time series-based methods were developed 
and compared. Compared to the current method analys-
ing malaria case data from 2012 to 2022, the historical 
average-based method demonstrated equivalent sensi-
tivity with a reduced false positive rate. A user interface 
tailored for anomaly detection is developed and aids in 
early detection by summarizing anomalies on a weekly 
basis across provinces. The code has been optimized for 
functionality and is configured to synchronize with the 
real-time malaria database. The anomaly detection algo-
rithms could be integrated at the case identification stage 
of the 1-3-7 protocol and applied at a sub village level. 
This approach would assist in determining the alloca-
tion of resources to prevent the spread of atypical malaria 
cases. The proposed early warning system enhances the 
timely identification of provinces at risk of epidemics and 
seamlessly integrates with Thailand’s malaria surveillance 
system.
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