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Abstract 

Background Artemisinin-based combination therapy (ACT) has been effective in the supervised treatment 
of uncomplicated malaria in Ghana. Since ACT usage is primarily unsupervised, this study aimed to determine 
the effectiveness of artemether–lumefantrine (AL) for treating malaria patients in two transmission settings in Ghana.

Methods Eighty-four individuals with uncomplicated Plasmodium falciparum malaria were recruited from Lekma 
Hospital (LH) in Accra (low-transmission area; N = 28), southern Ghana, and King’s Medical Centre (KMC) in Kumbungu 
(high-transmission area; N = 56), northern Ghana. Participants were followed up for 28 days after unsupervised 
treatment with AL. The presence of asexual parasites was determined by microscopic examination of Giemsa-stained 
blood smears. Plasmodium species identification was confirmed using species-specific primers targeting the 18S rRNA 
gene. Parasite recrudescence or reinfection was determined by genotyping the Pfmsp 1 and Pfmsp 2 genes.

Results After AL treatment, 3.6% (2/56) of the patients from KMC were parasitaemic on day 3 compared to none 
from the LH patients. One patient from KMC with delayed parasite clearance on day 3 remained parasite-positive 
by microscopy on day 7 but was parasite-free by day 14. While none of the patients from LH experienced parasite 
recurrence during the 28-day follow-up, three and two patients from KMC had recurrent parasitaemia on days 21 
and 28, respectively. Percentage reduction in parasite densities from day 1, 2, and 3 for participants from the KMC 
was 63.2%, 89.5%, and 84.5%. Parasite densities for participants from the LH reduced from 98.2%, 99.8% on day 
1, and 2 to 100% on day 3. The 28-day cumulative incidence rate of treatment failure for KMC was 12.8% (95% 
confidence interval: 1.9–23.7%), while the per-protocol effectiveness of AL in KMC was 89.47%. All recurrent cases 
were assigned to recrudescence after parasite genotyping by Pfmsp 1 and Pfmsp 2.

Conclusion While AL is efficacious in treating uncomplicated malaria in Ghana, when taken under unsupervised 
conditions, it showed an 89.4% PCR-corrected cure rate in northern Ghana, which is slightly below the WHO-defined 
threshold.
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Background
Over the past decade, significant progress has been made 
toward malaria control. Despite this, malaria continues 
to be a global health burden, with an estimated 241 
million cases and 627 thousand deaths in 2020 [1]. Sub-
Saharan Africa accounted for approximately 96% of the 
total deaths due to malaria. In Ghana, a 2021 report from 
the National Malaria Control Programme indicated that 
for every one thousand hospitalizations, 161 were due to 
malaria infection, and malaria accounted for 68 of one 
thousand deaths. Plasmodium falciparum accounts for 
90–98% of malaria infections [2–4].

Artemisinin-based combination therapy 
(ACT) is recommended for the treatment of 
uncomplicated falciparum malaria. Children 
and adults, except pregnant women in their first 
trimer, can be prescribed any of the artemisinin-
based combinations: artemether + lumefantrine 
(AL), artesunate + amodiaquine (AS–AQ), 
artesunate + mefloquine (AS–MQ), dihydroartemisinin 
+ piperaquine (DHA–PQ), and artesunate + sulfadoxine–
pyrimethamine (AS–SP).

Ghana adopted ACT as the frontline treatment 
of uncomplicated P. falciparum malaria in 2004 [5]. 
Currently, AS–AQ and AL are the recommended first-
line ACT, and DHA–PQ is the alternative ACT [6]. 
Adverse effects such as vomiting, is frequently reported 
with use of AS–AQ as compared to AL, leading to AL 
being commonly used in Ghana [7, 8]. Artemisinin and 
its derivatives are essential components of antimalarial 
treatment because they kill both young and mature 
intraerythrocytic parasites [9, 10]. In addition, 
artemisinins are known to have some gametocidal 
activities [11]. However, some studies reported the 
presence of gametocytes after treatment with ACT, 
indicating that the administration of artemisinin-based 
combinations may impact malaria transmission [12].

The World Health Organization (WHO) recommends 
a cure rate of > 90% for ACT [9]. However, a much lower 
cure rate of 77.8% has been reported in Burkina Faso 
after unsupervised ACT administration [13]. Some 
studies have also reported the presence of high/low 
residual sub microscopic parasitaemia on day 3 after 
supervised artemisinin-based combination treatment 
[12, 14]. Residual sub-microscopic infections after 
treatment with artemisinin-based combinations may 
cause recrudescent infections [12]. In  vivo artemisinin 
resistance is determined by parasite clearance time 
(PCT) and its related clinical phenotype, delayed parasite 
clearance [15]. However, accurate determination of 
parasite clearance half-life requires 6- or 8-hourly 
sampling of parasitaemia [16], which is requires 
hospitalization of participants, or participants return 

to study site for follow up. In practice this is a challenge 
as it requires more resources or logistics. As a result, 
the presence of malaria parasites in a 72-h blood smear 
after the initiation of treatment, which requires a single 
time-point measurement and fewer resources, has been 
proposed as a simple predictor of artemisinin resistance 
[17].

Artemisinin-based combinations administered 
under the strict supervision of drug intake have been 
efficacious in Ghana, with overall cure rates of 99.2% 
and 96% for ASAQ and AL, respectively [18]. Although 
case management of malaria in Ghana recommends 
completion of the ACT course, artemisinin-based 
combinations and other anti-malarials are available 
as over-the-counter drugs in local pharmacies as well 
as in health facilities, which are prescribed mostly as 
unsupervised treatment. Unsupervised treatment is 
expected to result in variations in drug efficacy as a 
result of, for example, nonadherence to dosage and time 
of treatment and noncompletion of treatment. Thus, 
the treatment outcome of malaria patients receiving 
unsupervised ACT may reflect the true drug efficacy 
in clinical practice. Therefore, the current study aimed 
to assess the effectiveness of AL for the unsupervised 
treatment of malaria in low- and high-transmission 
settings in Ghana.

Methods
Study sites
Patients were recruited from King’s Medical Centre 
(KMC) in Kumbungu District (9°  34′  36.3″  N 
0°  59′  39.2″  W), a high-transmission area in rural 
northern Ghana, and Lekma Hospital (LH) in 
Ledzokuku-Krowor Municipality (5°  36′  04.0″  N 
0° 11′ 09.1″ W), an urban low-transmission area within 
the city of Accra in southern Ghana (Fig. 1). Prevalence 
of malaria in northern Ghana and Accra have been 
reported to be 13.0% and 2.4%, respectively [19]. 
Kumbungu District has a unimodal rainfall pattern that 
starts from May to the end of November, with the peak 
occurring from July to September. The average rainfall 
is approximately 1000  mm. The Ledzokuku-Krowor 
area has two peak rainy seasons; the long rainy season 
is from April to June, and the second is from September 
to October. The average rainfall and temperature are 
730 mm and 26.8 °C, respectively [20].

Sample size estimation
The prevalence of clinical malaria in Ghanaian adults 
and children has been reported to be 14% and 12%, 
respectively [21, 22]. Reference to the formula for 
calculating sample size in prevalence studies (Daniel, 
1999) n =  Z2P (1 − P)/d2, where n = sample size; Z (1.96) 
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is the statistic corresponding to the level of confidence, 
P is the expected prevalence and d is the precision. Using 
a prevalence of clinical malaria of 1 4% and precision of 
0.09, the estimated sample size was 57.

Recruitment of participants
The study was performed between August and 
November 2017 at both study sites. During this time, 
individuals between the ages of 1 and 35 years reporting 
to the above-mentioned health facilities with symptoms 
of uncomplicated malaria were recruited. Individuals 
with uncomplicated malaria were defined as having an 
axillary temperature ≥ 37.5 °C or a history of fever within 
the last 24  h, a positive test for malaria parasites by 
microscopy at any parasitaemia, but lacking symptoms 
of severe malaria. A haemoglobin concentration of > 5 g/
dL of blood was also considered for inclusion. Individuals 
who had taken any antimalarial drugs 2 weeks before the 
study were also excluded.

Malaria diagnosis and parasite counts by microscopy
Thick and thin blood smears were stained with 4% 
buffered Giemsa solution (pH 7.1) for 30  min. Parasite 
density per microlitre of blood was determined by 
counting the asexual malaria parasites per 200 white 
blood cells (WBCs) on the thick film under oil emersion 
using a light microscope and assuming a white cell 
count of 8000/μL. Gametocyte densities were also 
counted on the thick film per 500 WBCs. A smear 
was reported as negative if no malaria parasites were 

observed after viewing 100 high-power fields. Two 
qualified microscopists read the smears, and if there 
were discrepancies (> 50% difference in parasite counts) 
in parasite counts, a third microscopist was consulted. 
The average of the two closest counts was taken as the 
parasite count for that case.

Treatment and follow‑up
Participants were prescribed AL (Coartem® Novartis; 
20 mg/120 mg per kg body weight) in a 6-dose regimen 
by clinicians per body weight as follows: 1 tablet per 
treatment for weights 5 to < 15 kg; 2 tablets per treatment 
for 15–20  kg; 3 tablets per treatment for weights 
between 25 and 35  kg, and 4 tablets per treatment for 
weights > 35 kg. There was no weight cut-off. Participants 
were advised to strictly take the medication at 0, 8, 24, 36, 
48, and 60 h with food. All treatments occurred at home 
without supervision.

Patient follow-up was performed on days 1, 2, 3, 7, 14, 
21, and 28. Blood samples (~ 50 µL) were collected from 
the study participants by a finger prick during admission 
(day 0) and on the days of the follow-up and used to 
prepare thick and thin blood smears and filter paper 
blood blots. Blood blots were air-dried and kept in tightly 
sealed Ziploc bags containing silica and stored at room 
temperature until use. There was no randomization or 
blinding of participants for the treatment. Participants 
who were parasitaemic after day 3 did not receive any 
treatment.

Study outcomes
Treatment outcomes were defined according to the 2009 
WHO methods for survival of anti-malarial drug efficacy 
[23]. Study participants who were not parasitaemic on 
day 28, had no fever and were not previously classified 
as having early treatment failure, late clinical failure or 
late parasitological cure were described as individuals 
with adequate clinical and parasitological responses. 
Participants were described as having early treatment 
failure when they were parasitaemic on day 3 and 
had fever. Late treatment failure was used to describe 
participants who were parasitaemic on day 28 with 
or without fever and were not previously classified as 
having early treatment failure, late clinical failure or late 
parasitological cure.

Primary study outcome
The primary efficacy indicator for this study involved 
the identification of participants with recrudescence 
infections per total number of participants who 
completed the study. All cases that were lost to follow-up, 
had new infections and results that were indeterminate 
were excluded from the analyses.

Fig. 1 Map of Ghana showing the locations of the two study sites, 
King’s Medical Centre (KMC) and Lekma Hospital (LH). (Note: this 
is an author-edited version of the map of Ghana)
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Parasite detection and species identification by PCR
The saponin-Chelex method was used with slight 
modifications to extract DNA from dried blood blots 
[24]. Briefly, cells were lysed with 0.05% saponin in 
phosphate-buffered saline (PBS) at 4  °C overnight, 
followed by incubation in 10% Chelex with intermittent 
washing steps with distilled water. DNA was eluted with 
50  µL of DNase/RNase-free water and kept at − 20  °C 
until use. Plasmodium species were determined by nested 
PCR using genus- and species-specific primers that target 
the 18S rRNA gene [25]. All reactions were carried out 
in a volume of 15 μL with 5 μL of DNA template for the 
first reaction and 0.5 μL of the first reaction product for 
the nested reaction. The master mix contained 167  nM 
dNTPs, 2.5  nM  MgCl2, 80  nM of each primer, and 1  U 
of One Taq polymerase (New England BioLabs Inc.). 
The PCR conditions were as follows: initial denaturation 
for 5 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 
1 min at 55 °C (58 °C for the nested PCR), and 1 min at 
68 °C, and a final extension for 5 min at 68 °C. The 3D7 P. 
falciparum strain was used as a positive control, and no 
template was used as a negative control.

Genotyping of Plasmodium parasites to distinguish 
between recrudescence and new infections
Plasmodium falciparum was genotyped by amplifying 
the polymorphic regions of block 2 of the merozoite 
surface protein 1 (msp1) gene and block 3 of the msp2 
gene [26]. Nested PCR with allele-specific primers [27] 
was used to distinguish three major allelic families (K1, 
MAD20, and RO33) for msp1 and two major allelic 
families (FC27 and IC1/3D7) for msp2. Positive control 
samples were prepared from cultured laboratory clones 
of 3D7, RO33 and FC27 (Additional file  1). Variations 
in the length of the amplified fragments were identified 
following agarose gel electrophoresis (Additional file 1). 
MSP 1 and 2 genotyping were performed for individuals 
with recurrent parasitaemia on or after day 7. All 
paired samples (day 0 and day of parasite recurrence) 
were run side by side on the same gel. If all alleles (in 
at least 1 locus) in parasites from the posttreatment 
sample were different from those in the day 0 sample, 

parasites in the posttreatment sample were classified as 
a new infection. A difference in base pairs of at least 10 
was considered to indicate 2 different alleles [28]. If at 
least one allele at each locus was common to the paired 
samples, the posttreatment sample was classified as a 
recrudescent sample.

Statistical analysis
Data were entered and analysed in SPSS version 20. 
The Z test was used to compare the differences in 
proportions between participants from the high- and 
low-transmission areas. An independent t test was used 
to compare the difference in age of participants and 
parasite densities. Pearson’s correlation was used to 
test for correlation between categorical data (e.g., the 
difference in the mean age of participants who carried 
gametocytes). A p value of less than 0.05 was regarded 
as statistically significant.

Results
Patients’ demographic and clinical profiles
A total of 84 malaria patients, including 56 from the 
high-transmission area (KMC) and 28 from the low-
transmission area (LH), were recruited into the study. 
The patients from KMC were significantly older 
than those from LH (Table  1). Participants from the 
KMC presented with significantly higher axillary 
temperatures than those from the LH. The mean 
asexual parasite density for participants from KMC 
was lower than that for participants from LH, although 
the difference was not statistically significant. While 
four (7.1%) patients from KMC carried gametocytes at 
recruitment, none from LH were gametocyte-positive 
by microscopy on day 0 (Table 1). A comparison of the 
ages of participants who carried asexual parasites and 
those who carried gametocytes showed that younger 
children (mean ± standard deviation; 2.0 ± 0.7) were 
more likely to carry gametocytes than older children 
(8.5 ± 1.1) (correlation test − 0.74; p = 0.03).

Table 1 Demographic and clinical characteristics of study participants from the two study sites

P values were calculated using differences in mean values or differences in proportions with Medcalc

KMC (N = 56) LH (N = 28) p value

Gender (% male) 46 50 < 0.0001

Mean age in years (range) 9.4 (1–35) 5.39 (2–17) 0.0343

Mean axillary temperature (°C) (range) 37.7 (36.7–39.6) 38.4 (35.8–40.4) < 0.0001

Mean asexual parasite density (parasites/µL of blood) (range) 48,615.86 (480–282,000) 71,869 (6000–490,000) < 0.0001

Mean sexual parasite density (gametocytes/µL of blood) (range) 2.57 (16–48) – –
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Primary outcomes
Out of the total number (84:56 from KMC and 28 from 
LH) of participants recruited, 59 (70.2%) participants; 
36 (64.29%) from KMC and 23 (82.1%) from LH) were 
successfully (followed for 28 days (Fig. 2).

All patients from LH cleared parasitaemia by day 
2. In comparison, two out of 56 (3.6%) patients from 
KMC were parasitaemic on day 3 (Fig. 3). None of the 
participants who were parasitaemic on day 3 had fever. 
One case from KMC was considered late treatment 
failure: the patient was parasitaemic on day 3, remained 
parasitaemic on day 7 but was aparasitaemic on day 
14. Whereas recurrent parasitaemia was not observed 
in LH during the 28-day follow-up, it was identified in 
4 of the 56 KMC patients. These four recurrent cases 
from KMC were late parasitological failures, with 
three occurring on day 21, one of which remained 
parasitaemic on day 28 and 1 of which developed 
parasites on day 28. This resulted in a cumulative 
incidence rate of recurrence of 12.8% (95% confidence 
interval: 1.9–23.7%) (Fig. 3).

Overall, 34 participants from KMC and all 
participants from LH had adequate clinical and 
pathological responses (Fig.  4). The cure rate (day 28) 
of AL at KMC was 89.5% (34/38) compared to 100% 
at LH. All recurrent cases identified on days 7, 21, and 
28 were classified as recrudescence after genotyping 
pfmsp1 and msp2. Thus, the PCR-corrected cure rate of 
AL at KMC remained at 89.4% (95% CI—the confidence 
interval for PCR-corrected efficacy is 23.546 to 47.512).

Discussion
The efficacies of artemisinin-based combinations 
against uncomplicated P. falciparum malaria have been 
monitored at multiple sentinel sites across Ghana [18, 
29, 30]. While these studies were carried out under 
more stringent clinical monitoring, the effectiveness 
of AL in practice was rarely evaluated. Thus, this study 
aimed to determine the effectiveness of unsupervised AL 
treatment in low and high transmission areas in Ghana. 
The results showed that AL remained highly effective at 
the southern site (LH) with a 100% cure rate, whereas 
it was suboptimal at the northern site, with a PCR-
corrected cure rate of 89.4%. Such regional differences 
have also been observed during the monitoring of AL 
efficacies. While the overall efficacy of AL was above 
95% in Ghana, two coastal regions have experienced a 
decline in efficacy in recent years, with PCR-corrected 
cure rates of AL approaching the 90% threshold set by 
WHO [18]. With the substantial heterogeneity of malaria 
epidemiology across Ghana, it is important to monitor 
ACT efficacies/effectiveness in multiple sentinel sites.

Day 3 parasite positivity is used as a proxy for 
artemisinin resistance, with 10% and 5% set as the 
thresholds for Southeast Asia and Africa, respectively 
[31]. In KMC, 3.6% of patients remained parasitaemic 
on day 3. However, it is noteworthy that the 28-day 
PCR-corrected cure rate declined to 86.1%, and one of 
the cases was an early parasitological failure. An earlier 
ACT clinical efficacy study conducted in the same 
region detected a 90.4% PCR-corrected cure rate for 
AL [29]. Compared to the directly observed treatment 
performed in the previous study, the current study with 
unsupervised AL treatment may have compliance issues, 
undermining the study results. However, the daily blood 
smear monitoring activities of the research team during 
the 3-day ACT unsupervised administration should 
have a positive effect on compliance. In addition, some 
of the recurrent cases had gametocytaemia, highlighting 
the potential for subsequent transmission. Altogether, 
these studies emphasize the significance of continuous 
monitoring of ACT, taking into account the transmission 
intensity in an area. Results from this study shows that 
AL continuous to be effective in the low transmission 
area, whereas there was the occurrence of treatment 
failures or participants from the high transmission area.

Clinical manifestations of malaria are significantly 
influenced by transmission intensity, age and acquired 
immunity to the parasite [32, 33]. In low transmission 
settings, exposure to malaria parasites is less as compared 
to high transmission settings. The transmission intensity 
would, therefore, influence the exposure to parasite 
hence affect the acquired immunity to malaria [34]. 
This explains the occurrence of high parasitaemia and 

Fig. 2 Flow chart of treatment outcome with artemether–
lumefantrine of patients with uncomplicated malaria from KMC 
and LH, Ghana. LTF loss to follow-up
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high axillary temperature in a relatively younger age for 
participants from LH as compared to KMC. Previous 
studies in Ghana observed a decline in the severity 
of clinical manifestations of malaria with increasing 
transmission intensity [35]. In light of this, when 
instituting malaria control measures, transmission 
intensity must be considered. In low endemic settings, 
this could further reduce parasite circulating in the area 
and would negatively impact the acquisition of natural 
immunity to malaria.

Conclusion
AL, as an unsupervised treatment, remained effective 
against uncomplicated falciparum malaria in a southern 
region, whereas declined effectiveness was observed in a 
northern region. Given the possible impact of compliance 
issues for unsupervised treatment, it is encouraged that 

Fig. 3 Mean asexual parasite density (blue unbroken line) and percentage parasitaemic (%) (red broken line) participants in KMC (A) and LH (B)

Fig. 4 Cumulative incidence of recurrent patients in 28 days in KMC. 
Dashed lines indicate the 95% confidence interval
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healthcare practitioners, particularly pharmacists and 
dispensers of anti-malarial drugs, explain the significance 
of completing the dosage at appropriate times for the intake 
of medications. This study also underlines the need for 
continuous monitoring of the clinical efficacy/effectiveness 
of ACT in multiple sentinel sites in Ghana.
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