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Abstract 

Background Immunogenic cell death (ICD) is a type of regulated cell death that plays a crucial role in activating 
the immune system in response to various stressors, including cancer cells and pathogens. However, the involvement 
of ICD in the human immune response against malaria remains to be defined.

Methods In this study, data from Plasmodium falciparum infection cohorts, derived from cross‑sectional studies, were 
analysed to identify ICD subtypes and their correlation with parasitaemia and immune responses. Using consensus 
clustering, ICD subtypes were identified, and their association with the immune landscape was assessed by employ‑
ing ssGSEA. Differentially expressed genes (DEGs) analysis, functional enrichment, protein‑protein interaction net‑
works, and machine learning (least absolute shrinkage and selection operator (LASSO) regression and random forest) 
were used to identify ICD‑associated hub genes linked with high parasitaemia. A nomogram visualizing these genes’ 
correlation with parasitaemia levels was developed, and its performance was evaluated using receiver operating 
characteristic (ROC) curves.

Results In the P. falciparum infection cohort, two ICD‑associated subtypes were identified, with subtype 1 showing 
better adaptive immune responses and lower parasitaemia compared to subtype 2. DEGs analysis revealed upregula‑
tion of proliferative signalling pathways, T‑cell receptor signalling pathways and T‑cell activation and differentiation 
in subtype 1, while subtype 2 exhibited elevated cytokine signalling and inflammatory responses. PPI network con‑
struction and machine learning identified CD3E and FCGR1A as candidate hub genes. A constructed nomogram inte‑
grating these genes demonstrated significant classification performance of high parasitaemia, which was evidenced 
by AUC values ranging from 0.695 to 0.737 in the training set and 0.911 to 0.933 and 0.759 to 0.849 in two validation 
sets, respectively. Additionally, significant correlations between the expressions of these genes and the clinical mani‑
festation of P. falciparum infection were observed.

Conclusion This study reveals the existence of two ICD subtypes in the human immune response against P. fal-
ciparum infection. Two ICD‑associated candidate hub genes were identified, and a nomogram was constructed 
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for the classification of high parasitaemia. This study can deepen the understanding of the human immune response 
to P. falciparum infection and provide new targets for the prevention and control of malaria.

Keywords Immunogenic cell death (ICD), Plasmodium falciparum, Machine learning, CD3E, FCGR1A

Background
Malaria continues to be one of the most serious infec-
tious diseases worldwide. There were an estimated 247 
million cases of malaria and 619,000 malaria deaths 
worldwide in 2021, with sub-Saharan Africa bearing the 
highest proportions of cases [1]. A preponderance of 
fatalities can be traced back to infections with Plasmo-
dium falciparum. The absence of an effective malaria 
vaccine, combined with the emergence of drug-resist-
ant strains, are the most significant barriers in efforts to 
eradicate malaria. The complex relationship between the 
host and the Plasmodium parasite is critical for the pro-
gression and outcome of the disease, and host immunity 
plays a significant role in controlling the infection.

Immunogenic cell death (ICD), a distinct form of regu-
lated cell death, is characterized by the release of specific 
danger signals from dying cells to the immune system [2]. 
Immunogenic cell death has important implications for 
cancer research, infectious diseases, and autoimmunity, 
as it can be harnessed to enhance antitumour immune 
responses, develop strategies against pathogens, and 
understand autoimmune diseases [3, 4]. However, there 
is limited research on the involvement of ICD in the 
human immune response against malaria. Understanding 
whether and how ICD is induced by Plasmodium infec-
tion can help us gain a better understanding of malaria 
pathogenesis and expedite the identification of effective 
targets for malaria control and prevention. Hyperpara-
sitaemia is considered a severity criterion for malaria [5] 
and has been associated with a poor outcome in severe 
malaria [6]. Thus, appreciating how the human immune 
landscape influences the parasitaemia of P. falciparum 
will help expedite the rational design of more effective 
malaria vaccines.

In this paper, to investigate the potential involve-
ment of ICD in the host immune response to P. falci-
parum infection, two ICD-associated subtypes were 
identified in the P. falciparum infection cohort by con-
sensus clustering. The ICD-associated subtypes were 
found to have a significant correlation with parasitae-
mia and the host immune response induced by malaria 
parasites. Then, differentially expressed genes (DEGs) 
in different ICD subtypes and the related signalling 
pathways were identified. The candidate hub genes 
associated with ICD were identified by protein‒pro-
tein interaction network construction and machine 
learning. Then, a nomogram to visually represent the 

correlation between these ICD-associated hub genes 
and parasitaemia levels was constructed and evaluated 
by ROC analysis of the initial training cohort and two 
external validation cohorts.

Furthermore, the expression levels of the hub genes 
associated with ICD were found to be significantly corre-
lated with clinical manifestations in P. falciparum infec-
tion. This investigation provides crucial insights for a 
better understanding of host–parasite interactions and 
offers valuable information for developing strategies to 
effectively control malaria.

Methods
Datasets
The whole-blood gene expression profiles and corre-
sponding clinical data from patients with P. falcipa-
rum infection were obtained from the Gene Expression 
Omnibus (GEO). These data sets originated from cross-
sectional studies, providing a comprehensive insight 
into the genetic landscape of this infection. The data-
set GSE34404 served as the training cohort, while 
GSE132050 and GSE52166 were utilized as the validation 
cohorts. The GSE34404 dataset encompasses a cohort of 
94 children, all under 10  years of age (median age 3.7), 
undergoing the symptomatic phase of blood-stage P. fal-
ciparum infection in urban Cotonou and rural Zinvié. 
These cases of uncomplicated acute malaria were con-
firmed through rapid diagnostic tests and blood smear 
analysis. The control group, comprising 61 age-matched 
individuals from Cotonou, tested negative for malaria 
and did not have sickle-cell disease. The peripheral blood 
samples from the malaria cases were collected prior to 
treatment.

The transcriptome data of malaria cases and control 
group was used in this study [7]. The GSE132050 data-
set derives from a Controlled Human Malaria Infection 
(CHMI) study conducted at the Centre for Clinical Vac-
cinology and Tropical Medicine, Oxford. This dataset 
involved 14 adult volunteers who received intravenous 
injections of 690 P. falciparum-infected erythrocytes.
The parasitaemia was monitored by qPCR twice daily 
with additional assessments using thick blood smears. 
The transcriptome data of whole blood at the day of 
diagnosis was used for analysis in this study [8]. The 
GSE52166 dataset forms a subset of a comprehensive 
cohort study focused on naturally acquired malaria 
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immunity, conducted in Kalifabougou, Mali. This region 
is characterized by intense and seasonally-concentrated 
P. falciparum malaria transmission, typically spanning 
from June to December. The RNA sequencing analysis 
within this dataset included participants who were sam-
pled at the time of their initial PCR-confirmed P. falci-
parum infection. This analysis encompassed a total of 41 
samples from individuals aged between 6 and 23  years, 
each accompanied by corresponding parasitaemia data. 
The parasitaemia in GSE52166 dataset was detected by 
microscopic examination of blood smears [9, 10]. For 
GSE34404 and GSE132050 microarray datasets, the 
matrix.txt files and the corresponding platform anno-
tation files were downloaded from GEO. The Limma 
package (version 3.52.4) in R software (version 4.2.1) 
was applied to perform background correction, normal-
ization and log2 conversion for the matrix data of each 
GEO dataset with default settings. The platform annota-
tion file was used to convert the probes into gene sym-
bols, and the mean expression level of multiple probes 
that corresponded to the same gene symbol was taken 
as the expression level of the corresponding gene. For 
GSE52166 RNA-Seq dataset, the counts data of each 
sample and the matrix.txt file were downloaded from the 
GEO. Initially, batch effect verification was conducted 
to identify and correct for any potential batch-related 
variations, utilizing the ‘ComBat’ function from the sva 
package in R. Then gene identifiers were resolved to their 
corresponding gene symbols using the comprehensive 
gene annotation resources available through the Ensembl 
genome browser, facilitated by the biomaRt package in 
R. The expression values from multiple reads or tran-
scripts mapping to the same gene were aggregated into 
a single gene-level measure by calculating their sum, uti-
lizing the aggregate function in R. Finally, the processed 
data underwent normalization with the Trimmed Mean 
of M-values (TMM) using the edgeR package in R. Then 
a log2 transformation was performed on the normalized 
read counts. For both GSE132050 and GSE52166 data-
sets, malaria parasitaemia below 10,000 parasites per 
microlitre of blood was considered low parasitaemia, 
while levels exceeding this threshold were classified as 
high parasitaemia [11]. This high/low parasitaemia cutoff 
is close to the threshold in training dataset GSE34404. A 
cumulative clinical score for each patient in GSE132050 
was calculated by summing adverse events on the day of 
diagnosis [8].

Consensus clustering and characterization of parasitaemia 
and immune landscape between the two ICD subtypes
Genes associated with immunogenic cell death (ICD) 
were identified through a comprehensive literature 

analysis, which has been previously summarized by 
Garg et  al. [12]. The inclusion criteria for the studies 
they considered were: (1) discussion of the correlation 
between ICD and danger signaling pathways or immune 
processes. (2) preventive or therapeutic rodent immu-
nization experiments, or experiments involving the 
co-culture of cancer cells with immune cells. (3) experi-
mental interventions, such as the use of siRNA/shRNA 
for gene silencing, antibody blocking, or whole/tissue/
circuit-specific knockout models in rodents. (4) asso-
ciation of specific processes or molecular entities with 
ICD, substantiated by appropriate controls (untreated, 
negative, or positive). From their extensive survey, Garg 
et al. identified 33 ICD-related parameters, which equate 
to 34 distinct genes when CD8A and CD8B are counted 
separately. These parameters encompass a wide range of 
immunological complexity and represent both emerg-
ing and classic immune processes [12]. In the present 
study, the unsupervised clustering ‘PAM’ method based 
on Euclidean and average linkages was applied to iden-
tify distinct molecular subtypes based on ICD gene 
expression. The choice of the optimal number of clusters 
for PAM clustering was determined based on the Pro-
portion of Ambiguous Clustering (PAC) method. This 
method is utilized to identify the most suitable number 
of clusters (k) by quantifying the ambiguity of the cluster-
ing results. The PAC score is calculated for each poten-
tial cluster number, and the optimal number of clusters 
is identified as the one with the lowest PAC score. The 
ConsensusClusterPlus tool in R was utilized to execute 
this procedure and identify molecular subtypes linked to 
ICD in the GSE34404 cohort. The process was repeated 
5000 times to ensure classification stability. Principal 
component analysis (PCA) was conducted to show the 
distribution of ICD subtypes. To assess the clinical sig-
nificance of the ICD subtypes, the association between 
ICD subtype and malaria parasitaemia was evaluated. 
Additionally, the correlations between ICD subtypes and 
immune cell populations in whole blood was assessed. 
The enrichment of 28 immune signatures for each sample 
was quantifed using the single-sample gene set enrich-
ment analysis (ssGSEA) method, as implemented in the 
GSVA R package. The subsets of genes representing spe-
cific immune cell types were identified from the ImmPort 
database (Additional file 2: Table S1). The ssGSEA scores 
(normalized enrichment score, NES) were compared 
between different ICD subtypes. Statistical analyses were 
performed using unpaired t tests with adjustments for 
multiple comparisons made using the Benjamini–Hoch-
berg (BH) procedure. All statistical analyses were con-
ducted using R software (version 4.2.1).
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Identification of differentially expressed genes (DEGs) 
and functional enrichment analysis
The DEGs between the two ICD subtypes were identi-
fied using the “limma” R package. In addition, |log2-fold 
change (FC)| > 0.5 and p value < 0.05 were set as the cri-
teria for identifying DEGs. Functional enrichment analy-
ses, including Gene Ontology (GO) enrichment and gene 
set enrichment analysis (GSEA), were conducted with the 
R package clusterProfiler in the Bioconductor platform. 
GO enrichment analyses were premised on pvalueCut-
off = 0.05 and qvalueCutoff = 0.01 thresholds. PvalueCut-
off = 0.05 was designated as the threshold for GSEA.

Identification of key ICD genes and machine learning
A PPI network of the DEGs between different ICD sub-
types was constructed through the Search Tool for the 
Retrieval of Interacting Genes (STRING) database. Then, 
Cytoscape software v 3.8.0 was used to construct the PPI 
network. The top 10 upregulated genes and top 10 down-
regulated genes in ICD subtype 1 compared with ICD 
subtype 2 were identified using the CytoHubba plugin 
with the Maximal Clique Centrality (MCC) topological 
algorithm. Then, two machine learning algorithms were 
applied to further filter candidate genes for high parasi-
taemia classsification. The “glmnet” [13] and “random-
Forest” R packages were applied to perform LASSO 
regression [14] and RF analysis [15]. The genes identified 
by both LASSO and RF were considered potential hub 
genes for high parasitaemia classification.

Nomogram construction and receiver operating 
characteristic (ROC) evaluation
A nomogram is a tool commonly used in medical predic-
tion that combines the results of regression models and 
individual characteristics to estimate the probability of 
clinical outcomes [16]. Based on candidate hub genes, 
the “rms” R package was adopted to construct the nom-
ogram. “Points” indicates the score of each candidate 
hub gene, and “Total Points” indicates the sum of all the 
scores of the genes above [17]. ROC evaluation was used 

to evaluate the classification performance of candidate 
genes and the nomogram in both the discovery cohort 
and the validation cohort using the “pROC” R package. 
The area under the curve (AUC) and 95% confidence 
interval (CI) were calculated to quantify the classification 
performance of the nomogram.

Results
Two ICD‑associated subtypes were identified by consensus 
clustering
To investigate the potential involvement of ICD in the 
host immune response to P. falciparum infection, the 
expression patterns of ICD genes in both the uninfected 
control samples and malaria-infected samples in the 
GSE34404 dataset from a cross-sectional study were eval-
uated. In the malaria-infected samples, a subset of ICD 
genes, such as TNF, P2RX7,BAX, IFNG, PRF1, CALR, 
HSP90AA1, IL6, IFNGR1, IL17RA, ENTPD1, MYD88, 
CASP1, IL1B, LY96 and TLR4, exhibited significant 
upregulation. Conversely, significant downregulation 
of numerous ICD genes, including CD8A, CD8B, CD4, 
NT5E, HMGB1, ATG5, NLRP3 and IL10, was observed 
(Fig.  1A). GO enrichment of these genes indicated that 
malaria infection can induce cytokine production but can 
also suppress lymphocyte and mononuclear cell differen-
tiation to a certain extent (Additional file 1: Fig. S1). Prin-
cipal component analysis (PCA) was performed to show 
the difference in the expression of ICD genes between 
malaria-infected samples and uninfected control sam-
ples. Utilizing the non-parametric approach provided by 
the “vegan” package in R, PerMANOVA test based on the 
Euclidean distance measures revealed a notable dispar-
ity in ICD genes expression between these two groups, 
evidenced by an  R2 value of 0.29 and a p value of 0.001 
(Fig. 1B).

Subsequently, the ICD-associated subtypes amongst 
the malaria-infected samples were identified by employ-
ing consensus clustering techniques. Utilizing PAM 
clustering, two distinct clusters with divergent ICD 
gene expression patterns were identified within the 

(See figure on next page.)
Fig. 1 Two ICD‑associated subtypes were identified in the Plasmodium falciparum infection cohort by consensus clustering. A Heatmap showing 
the expression patterns of ICD genes [12] in both uninfected control and malaria‑infected patient samples in the GSE34404 dataset. The statistical 
analyses were performed employing an unpaired t‑test, with adjustments for multiple comparisons made using the Benjamini–Hochberg (BH) 
procedure. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Blue stars indicate lower expression, while red stars indicate higher expression 
in malaria‑infected samples. B The PerMANOVA test based on the Euclidean distance measures showed a notable disparity of ICD genes expression 
between the control group and malaria‑infected group in the GSE34404 dataset using principal component analysis (PCA) (adonis  R2 0.29; p value 
0.001). C Consensus matrices of malaria‑infected samples in the GSE34404 dataset for k = 2 using 5000 iterations of the unsupervised consensus 
clustering method (PAM) to ensure clustering stability. D Heatmap showing the expression of ICD genes in different subtypes in the GSE34404 
dataset. Statistical analyses were conducted employing an unpaired t‑test, with adjustments for multiple comparisons made using the Benjamini–
Hochberg (BH) procedure. Blue stars and red stars indicate lower and higher expression in the cluster 1 subtype, respectively. E PCA of ICD subtypes 
in malaria‑infected samples in the GSE34404 dataset
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Fig. 1 (See legend on previous page.)
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malaria-infected samples from the GSE34404 dataset, 
including 52 cases in ICD-associated cluster 1 and 42 
cases in ICD-associated cluster 2 (Fig.  1C). The tran-
scriptomic profiles of ICD genes that were differen-
tially expressed in the two clusters were delineated in a 
heatmap (Fig.  1D). Based on the results of the PCA, all 
malaria-infected samples could be approximately seg-
regated into two distinct groups, further corroborating 
the existence of two remarkably divergent ICD subtypes 
(Fig.  1E). Therefore, the cluster 1 group was defined 
as ICD-associated subtype 1 and the cluster 2 group as 
ICD-associated subtype 2.

The association of ICD subtype with parasitaemia 
and the immune cell profile in patients infected 
with Plasmodium falciparum
Then, to investigate whether ICD can affect the clinical 
phenotype of malaria infection, the relationship between 
the ICD subtypes and malaria parasitaemia was evaluated 
in the GSE34404 dataset. The results showed that the 
subtype 1 group had significantly lower parasitaemia than 
the subtype 2 group (Fig.  2A). This indicates that ICD 
may play a role in controlling parasite proliferation in 
the human host. To investigate whether the immune cell 
types in whole blood were affected by ICD, ssGSEA was 
used to assess and grade the enrichment of 28 immune 
signatures for each sample in both ICD subtypes. Com-
pared to the subtype 2 group, the subtype 1 group had 
significantly more activated CD4 T cells, activated CD8 T 
cells, CD56-dim natural killer cells, central memory CD4 
T cells, effector memory CD8 T cells, memory B cells, 
natural killer T cells and type 17 helper cells but signifi-
cantly fewer activated dendritic cells, eosinophils, mac-
rophages, natural killer cells, neutrophil and regulatory T 
cells (Fig. 2B). This result implied that subtype 1 is related 
to a better adaptive immune response, which may con-
tribute to lower parasitaemia, compared with subtype 2.

Differentially expressed genesecs (DEGs) and different 
signalling pathways were identified between the different 
ICD subtypes
To investigate the molecular mechanism involved in 
modulating malaria parasitaemia, the key DEGs and sig-
nalling pathways between these two ICD subtypes were 
identified. DEGs analysis was conducted using the limma 
package in R, where the design matrix was constructed 
with model.matrix, linear modeling was performed with 
lmFit, empirical Bayes moderation was applied using 
eBayes, and differentially expressed genes were identi-
fied using topTable with the Benjamini–Hochberg adjust-
ment method (adjust =‘BH’) and a p-value threshold of 
0.05. Then 910 significant DEGs (294 upregulated and 
616 downregulated) were identified in the subtype 1 

group compared with the subtype 2 group with a filter-
ing threshold of a p value less than 0.05 and |log2-fold 
change| greater than 0.5. The heatmap of the top 30 DEGs 
is shown in Fig. 3A. The volcano plot depicted in Fig. 3B 
shows annotations of the DEGs with a |log2-fold change| 
greater than 1.5. Then, GSEA was conducted on the 910 
DEGs between the subtype 1 and subtype 2 groups using 
the clusterProfiler package. The hallmark GSEA result 
suggests that proliferation-related signalling pathways, 
including hallmark myc targets v1 and hallmark E2F tar-
gets, were activated, while inflammation-related path-
ways, including hallmark TNFA signalling via NFKB and 
hallmark inflammatory response, were suppressed in 
the subtype 1 group compared with the subtype 2 group 
(Fig. 4A). The KEGG GSEA results suggested that T-cell 
receptor signalling, antigen processing and presentation, 
natural killer cell-mediated cytotoxicity and cell adhesion 
molecules cams were activated in the subtype 1 group 
compared with the subtype 2 group (Fig. 4B). Moreover, 
GO enrichment analysis was applied to the upregulated 
and downregulated DEGs in the subtype 1 group com-
pared with the subtype 2 group separately using the clus-
terProfiler package. The GO enrichment analysis results 
showed that the genes upregulated in the subtype 1 group 
were mainly involved in leukocyte cell‒cell adhesion, 
T-cell activation and differentiation and the T-cell recep-
tor signalling pathway, while the downregulated genes 
were related to cytokine production, cytokine-mediated 
signalling pathways and regulation of the inflamma-
tory response (Fig. 4C, D). These results suggest that the 
proliferative signalling pathway, T-cell receptor signal-
ling pathway and T-cell activation and differentiation 
are upregulated in the subtype 1 group, while cytokine 
signalling and the inflammatory response tended to be 
upregulated In the subtype 2 group.

Candidate ICD‑associated hub genes that can differentiate 
between low and high parasitaemia were identified 
by protein–protein interaction (PPI) network construction 
and machine learning
After confirming the existence of two ICD subtypes asso-
ciated with parasitaemia in malaria infection, a PPI net-
work was constructed to find hub genes for subsequent 
machine learning analyses. The PPI networks of the 
upregulated genes and downregulated genes in subtype 
1 were established separately by using the STRING data-
base. The results of the STRING analysis were imported 
into Cytoscape, and the top 10 hub genes for both upreg-
ulated genes and downregulated genes were identified 
based on the maximal clique centrality (MCC) method 
using the cytoHubba plugin (Fig.  5A, B). Furthermore, 
LASSO regression was applied to screen hub genes to 
differentiate low and high parasitaemia (Fig. 5C, D), and 
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RF machine learning algorithms ranked the genes based 
on the calculation of the importance of each gene associ-
ated with parasitaemia (Fig. 5E). The intersection of the 
seven potential candidate genes from LASSO and the 
top 10 most important genes from the RF was visualized 
via a Venn diagram (Fig. 5F), and two genes (CD3E and 
FCGR1A) were retained for final validation.

Development and validation of a nomogram for visualizing 
the correlation between ICD‑associated hub genes 
and parasitaemia levels, and assessing its classification 
efficacy
A nomogram was constructed based on these two 
candidate hub genes (Fig.  6A), and a ROC curve was 
established to assess the classification specificity and 

Fig. 2 The ICD‑association subtypes were correlated with parasitaemia and immune cell profile in Plasmodium falciparum‑infected whole‑blood 
samples. A Association of ICD subtypes with log2 parasitaemia in malaria‑infected samples in the GSE34404 dataset. The statistical analysis 
was performed using an unpaired t test. B Immunophenotyping of different ICD subtypes in malaria‑infected whole‑blood samples 
in the GSE34404 dataset based on ssGSEA. The ssGSEA scores (enrichment level) were compared between different ICD subtypes. The statistical 
analyses were performed employing an unpaired t‑test, with adjustments for multiple comparisons made using the Benjamini‑Hochberg (BH) 
procedure. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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Fig. 3 Differentially expressed genes (DEGs) were identified in different ICD subtypes. A Heatmap of the top 30 DEGs in the ICD subtype 1 group 
compared with the ICD subtype 2 group was constructed with a filtering threshold of a p value less than 0.05 and |log2‑fold change| greater 
than 0.5 by using the limma algorithm. B Volcano plot presenting the distribution of DEGs between different ICD subtypes in infected samples 
in GSE34404; differentially expressed genes with |log2‑fold change| greater than 1.5 are annotated
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sensitivity of each gene and the nomogram. As shown 
in Fig.  6B, C, the areas under the ROC curve (AUCs) 
for CD3E and FCGR1A were 0.695 and 0.721, respec-
tively. The AUC value for the nomogram was 0.737, 
which showed the best classification performance 
(Fig.  6D). Then the nomogram’s classification effi-
cacy was validated in external cross-sectional studies 
GSE132050 and GSE52166, where it achieved AUC 
values of 0.933 and 0.849, respectively. This indicates 
robust classification performance across both train-
ing and validation cohorts (Fig.  6E–H). Additionally, 
in the external validation cohort GSE132050, both 
CD3E and FCGR1A hub genes exhibited identical AUC 

values of 0.911 (Fig. 6F–G). In cohort GSE52166, these 
genes demonstrated substantial classification utility 
with AUCs of 0.759 and 0.817, respectively (Fig.  6I–
J). Furthermore, a significant inverse correlation was 
observed between CD3E expression and the clini-
cal score, defined as the cumulative count of adverse 
events recorded on the day of diagnosis. Conversely, 
FCGR1A expression exhibited a significant positive 
correlation with the clinical score. These correlations 
were established based on data from the GSE132050 
validation cohort (Fig. 6K–L). This result suggests that 
these two ICD-associated genes are correlated with the 
severity of malaria due to P. falciparum infection.

Fig. 4 Functional enrichment of DEGs between the two ICD subtypes using the clusterProfiler package. A Hallmark GSEA of 910 DEGs 
between the ICD subtype 1 and ICD subtype 2 groups. B KEGG GSEA of DEGs between the ICD subtype 1 and ICD subtype 2 groups. For A and B, 
“Gene ratio”is the proportion of genes from a predefined gene set that appear in the ranked list of genes being analysed. The size of the dots 
represents ‑log10 of the P‑adjusted values, and the colour of the dots represents the NES. C GO enrichment analysis of genes upregulated 
in the ICD subtype 1 group compared with the ICD subtype 2 group. D GO enrichment analysis of genes downregulated in the ICD subtype 1 
group compared with the ICD subtype 2 group. For C and D, “Gene ratio” is the percentage of total DEGs annotated with the given GO term. The 
size of the dots represents the number of DEGs associated with the GO term, and the colour of the dots represents the P‑adjusted values
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Fig. 5 Candidate ICD‑associated hub genes that can differentiate low and high parasitaemia were identified by protein‒protein interaction (PPI) 
network construction and machine learning. A The top 10 hub genes amongst genes upregulated in the ICD subtype 1 group were identified 
based on the maximal clique centrality (MCC) method using the cytoHubba plugin in Cytoscape. The color spectrum from red to yellow indicates 
the genes’ connection degree, where darker hues signify a higher degree and greater gene importance. B The top 10 hub genes amongst genes 
downregulated in the ICD subtype 1 group were identified based on the MCC method using the cytoHubba plugin. C Binomial deviance 
was revealed by the LASSO regression model in the tenfold cross validation. The vertical dotted lines indicate the optimal values identified 
using the minimum and 1‑SE criteria. D LASSO coefficient profiles of 20 selected ICD‑associated genes in the tenfold cross‑validation. E Twenty 
ICD‑associated genes were ranked based on the importance of each gene associated with parasitaemia calculated by using RF machine learning 
algorithms. F Venn diagram showing the two candidate hub genes identified via both of the above algorithms
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Discussion
Immunogenic cell death (ICD) is a specific type of cell 
death that triggers an immune response by releasing 
danger signals and activating immune cells [18]. Cur-
rently, there is limited research on ICD in malaria. 
Thus, investigating ICD in malaria holds great promise 
for advancing the understanding of this disease, facili-
tating vaccine development and identifying new thera-
peutic targets.

In the present study, two ICD subtypes were identi-
fied by consensus clustering based on ICD-related gene 
expression in a cohort of patients infected with Plasmo-
dium falciparum. Subtype 1 was found to be associated 
with lower parasitaemia and a better adaptive immune 
response than subtype 2. Functional enrichment analy-
sis of DEGs between these two ICD subtypes showed 
that the proliferative signalling pathway, T-cell receptor 
signalling pathway and T-cell activation and differen-
tiation were upregulated in subtype 1, while cytokine 
signalling and inflammatory response tended to be 
upregulated in subtype 2. In addition, two key DEGs 
between these two ICD subtypes were identified by PPI 
network and machine learning analyses, and a nomo-
gram to classify high parasitaemia was constructed 
based on these two hub genes and evaluated by ROC 
curves. Finally, these two hub genes associated with 
ICD were found to be significantly correlated with the 
clinical manifestations (sum of the adverse events) of P. 
falciparum infection.

To date, the majority of research on ICD has been pri-
marily focused on the field of oncology. 34 ICD-related 
genes that have been extensively summarized in the lit-
erature on tumour research were utilized to investigate 
the potential role of ICD in Plasmodium infection [12]. 
The result shows that, compared to controls without 
Plasmodium infection, infected patients exhibit upreg-
ulation of genes associated with cytokine production 
and downregulation of genes related to lymphocyte and 
monocyte differentiation. PCA conducted on the dis-
tribution of ICD genes demonstrated a significant dis-
parity between malaria-infected and uninfected control 
samples. This significant alteration suggests a crucial 

role for immunogenic cell death in defence against 
malaria infection.

Two ICD subtypes were identified in the P. falcipa-
rum infection cohort. The subtype 1 group exhibited 
lower parasitaemia and a more robust adaptive immune 
response than the subtype 2 group. It was reported 
that when cells undergo ICD, they release DAMPs such 
as ATP, heat shock proteins, and DNA [19, 20]. These 
DAMPs can activate the immune system and facilitate 
the activation of antigen-presenting cells [21, 22]. Fur-
thermore, ICD can also induce T-cell immune recogni-
tion and differentiation, enhancing immune effectiveness 
[2, 23]. The current study suggests that the subtype 1 
group may be the ICD-activated group, which produces 
a more efficient immune response against malaria para-
sites. The subsequent functional enrichment analysis 
provided further evidence that the ICD-activated group 
exhibited upregulation of key pathways, including the 
T-cell receptor signalling pathway, T-cell activation and 
differentiation, and the proliferative signalling pathway.

In this study, two key DEGs, FCGR1A and CD3E, 
between the two subtypes of ICD in a P. falciparum 
infection cohort were identified using a PPI network and 
machine learning. The expression of these two DEGs was 
significantly correlated with malaria parasitaemia, and 
the expression of FCGR1A and CD3E was also signifi-
cantly correlated with clinical manifestations. It has been 
reported that FCGR1A was upregulated at the protein 
level on both classical and non-classical monocytes dur-
ing malaria [24]. And the activation of neutrophils, which 
also express FCGR1A, along with an increase in Neutro-
phil Extracellular Trap (NET) counts, has been observed 
to correlate with rising parasitaemia levels in P. falcipa-
rum infections. This phenomenon was particularly nota-
ble in cases of severe malaria [25]. However, the specific 
mechanisms of FCGR1A function in malaria infection are 
still relatively unknown. CD3E functions mainly as a part 
of the T-cell receptor, which, upon antigen binding, trig-
gers the activation of T cells and the immune response. 
However, there is a lack of direct research on the spe-
cific role of CD3E in malaria infection. The identification 
of these hub genes may suggests a potential differential 

Fig. 6 Nomogram construction and classification performance evaluation. A The nomogram for classification of high parasitaemia in the GSE34404 
dataset. Each predictor variable (CD3E and FCGR1A) is represented on a separate axis. To use, assign points for each predictor value, sum these to get 
a total score, and then find the corresponding high parasitaemia risk on the bottom axis. B–D The ROC curves for each candidate hub gene (CD3E 
and FCGR1A) and the nomogram show their significant classification efficacy for high parasitaemia in the GSE34404 dataset. E–G The ROC curves 
of the nomogram and candidate hub genes (CD3E and FCGR1A) show their significant classification efficacy for high parasitaemia in the GSE132050 
validation dataset. H–J The ROC curves of the nomogram and candidate hub genes (CD3E and FCGR1A) show their significant classification 
efficacy for high parasitaemia in the GSE52166 validation dataset. K–LThe correlation between candidate hub gene (CD3E and FCGR1A) expression 
and clinical score (the sum of adverse events on the day of diagnosis) in the GSE132050 validation dataset. Statistical analyses were performed 
using the unpaired t test. * p < 0.05

(See figure on next page.)
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regulation of leukocyte subsets in the peripheral blood 
which may due to cell trafficking during malaria infec-
tion. The regulation characterized by an upregulation of 
T-cell activation and a simultaneous downregulation of 
neutrophils and monocytes may confer a more favourable 
environment for the clearance of Plasmodium parasites. 
The immune status of the host is a crucial factor that 
influences parasitaemia development after infection with 
malaria parasites. In this study, a nomogram was devel-
oped based on the expression levels of two ICD-related 
hub genes, revealing a significant correlation between the 
expression of two key host immune molecules, FCGR1A 
and CD3E, and P. falciparum parasitaemia. These two 
immune molecules may potentially serve as novel targets 
for the prevention and control of malaria, as well as offer-
ing new adjuvant targets for the development of malaria 
vaccines.

There were some limitations in this study. First, due 
to data limitations, the GSE34404 dataset, which con-
tains the most cases that can be found, was chosen as 
the training dataset. The classification efficacy of the 
nomogram in the validation datasets GSE132050 and 
GSE52166 appeared notably high, potentially influenced 
by the limited sample sizes of these datasets. Further vali-
dation is recommended through an expansive, large-scale 
study encompassing a more substantial sample size. Sec-
ond, although it was found that the ICD-associated genes 
FCGR1A and CD3E were associated with parasitaemia 
and clinical manifestations in P. falciparum infection, the 
biological or medical mechanisms underlying these phe-
nomena remain unclear. Therefore, functional and mech-
anistic experiments are needed to verify and explain the 
roles of ICD in malaria infection.

Conclusion
Our study delineated two distinct ICD subtypes in a P. 
falciparum infection cohort and identified two ICD-asso-
ciated candidate hub genes, FCGR1A and CD3E, which 
are significantly correlated with parasitaemia levels and 
clinical manifestation following P. falciparum infec-
tion. This research can deepen the understanding of the 
human immune response induced by P. falciparum infec-
tion and provide adjuvant targets for malaria vaccine 
development.
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