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Abstract 

Background Anopheles coluzzii is a primary vector of malaria found in West and Central Africa, but its presence 
has hitherto never been documented in Kenya. A thorough understanding of vector bionomics is important as it 
enables the implementation of targeted and effective vector control interventions. Malaria vector surveillance 
efforts in the country have tended to focus on historically known primary vectors. The current study sought to deter‑
mine the taxonomic status of samples collected from five different malaria epidemiological zones in Kenya as well 
as describe the population genetic structure and insecticide resistance profiles in relation to other An. coluzzii 
populations.

Methods Mosquitoes were sampled as larvae from Busia, Kwale, Turkana, Kirinyaga and Kiambu counties, represent‑
ing the range of malaria endemicities in Kenya, in 2019 and 2021 and emergent adults analysed using Whole Genome 
Sequencing (WGS) data processed in accordance with the Anopheles gambiae 1000 Genomes Project phase 3. Where 
available, historical samples from the same sites were included for WGS. Comparisons were made with An. coluzzii 
cohorts from West and Central Africa.

Results This study reports the detection of An. coluzzii for the first time in Kenya. The species was detected in Turkana 
County across all three time points from which samples were analyzed and its presence confirmed through taxo‑
nomic analysis. Additionally, there was a lack of strong population genetic differentiation between An. coluzzii 
from Kenya and those from the more northerly regions of West and Central Africa, suggesting they represent a con‑
nected extension to the known species range. Mutations associated with target‑site resistance to DDT and pyre‑
throids and metabolic resistance to DDT were found at high frequencies up to 64%. The profile and frequencies 
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of the variants observed were similar to An. coluzzii from West and Central Africa but the ace-1 mutation linked 
to organophosphate and carbamate resistance present in An. coluzzii from coastal West Africa was absent in Kenya.

Conclusions These findings emphasize the need for the incorporation of genomics in comprehensive and routine 
vector surveillance to inform on the range of malaria vector species, and their insecticide resistance status to inform 
the choice of effective vector control approaches.

Keywords Anopheles coluzzii, Malaria vectors, Kenya, Population structure, Insecticide resistance

Background
Malaria is transmitted through the infectious bite of the 
female Anopheles mosquito and is a major cause of mor-
bidity and mortality in Kenya and sub-Saharan Africa 
in general. In 2022, there were an estimated 249 million 
cases of malaria worldwide with 233 million of these 
occurring in the WHO African region and accounting 
for about 94% of all cases [1]. In Kenya, approximately 
70% of the population is at risk of malaria with the 
disease accounting for an estimated 13–15% of outpa-
tient consultations [2]. Despite concerted global efforts 
to control malaria, elimination remains a challenge in 
both low and high burden settings. Historically, the 
Anopheles gambiae species complex and Anopheles 
funestus group have been known to transmit malaria 
in Kenya. Within the An. gambiae complex, An. gam-
biae sensu stricto (s.s.) and Anopheles arabiensis were 
considered the major vectors, with Anopheles merus 
contributing to transmission in coastal Kenya. Invasive 
Anopheles stephensi has also recently been detected in 
the country, but its contribution to malaria control is 
yet to be evaluated [3].

Anopheles coluzzii is another member of the An. gam-
biae species complex, which is morphologically indis-
tinguishable from at least ten sibling species of malaria 
in sub-Saharan Africa (SSA) [4, 5]. It is responsible for 
a significant proportion of the malaria transmission 
across SSA along with An. gambiae and An. arabiensis, 
although An. funestus is of increasing concern in East 
and Southern Africa [6]. Anopheles coluzzii was formally 
named in 2013 following accumulating evidence of sub-
division between the previously described M (Mopti) 
and S (Savana) molecular forms of An. gambiae, evidence 
which included the presence of pre-mating barriers and 
genome-wide divergence and independent evolution-
ary trajectories; consequently, the M form was assigned 
the name An. coluzzii and the S form An. gambiae [7]. 
Anopheles coluzzii is widely distributed in West and Cen-
tral Africa and found in sympatry with other members 
of the species complex and has also been documented in 
Somalia [8]. To date however, no record of its presence in 
Kenya is available. Similar to other vector species within 
the An. gambiae species complex, the distribution and 
role of An. coluzzii in malaria transmission as well as the 

development of insecticide resistance varies greatly in 
different settings [9–11].

The heterogeneities with respect to ecological charac-
teristics and trophic habits of members of An. gambiae 
sensu lato (s.l.) have allowed the expansion of its range 
and contributed to its success in malaria transmission 
[12, 13]. Compared to An. gambiae, which prefers to 
breed in unpolluted environments typical of rural areas, 
An. coluzzii possess a greater capacity to survive in eco-
logically complex environments characterized by the 
presence of a variety of stressors. Anopheles coluzzii is 
likely to have a greater resistance to desiccation because 
it predominates in arid regions [14, 15]. Studies have 
shown An. coluzzii to have greater tolerance to salinity as 
well as xenobiotics and ammonia pollutants in larval hab-
itat compared to An. gambiae, enabling extension of its 
range beyond traditional rural settings to densely urban-
ized settings [16–18]. With the trends in urban migration 
seen in many African countries expected to continue and 
unplanned human settlements in urban settings present-
ing a potential risk factor of increased malaria transmis-
sion [19], comprehensive vector surveillance is crucial. 
Such surveillance will improve the understanding of vec-
tor bionomics thereby enabling the implementation of 
targeted and effective vector control interventions [20–
22]. These objectives are in line with the WHO Global 
Vector Control Response 2017–2030 strategy’s recom-
mendation of strengthening national surveillance sys-
tems and integration with health information systems to 
guide vector control and effectiveness [23].

Most entomological studies and vector surveillance 
efforts, including those in Kenya tend to focus on the his-
torically known primary vectors of malaria to the exclu-
sion of unanticipated or novel vector species. Recently 
however, the potential role of secondary vectors in 
malaria transmission has been highlighted aided by the 
use of molecular identification tools [24, 25]. The current 
study used whole genome sequence (WGS) data to inves-
tigate the taxonomic relationship of samples collected 
across five counties in Kenya with different epidemio-
logical parameters. This investigation describes the first 
report on An. coluzzii in Kenya, while seeking to charac-
terize their population structure and insecticide resist-
ance profiles.
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Methods
Mosquito sampling, identification and rearing
The study utilized archived mosquitoes collected from 
previous studies in addition to samples collected between 
December 2019 and February 2021 from five study sites 
(Fig. 1). These were: (i) Teso in Busia County, (ii) Kwale 
in Kwale County, (iii) Kakuma in Turkana County, (iv) 
Mwea in Kirinyaga County and (v) Thika in Kiambu 
County (Table  1). These five locations represent differ-
ent ecological and malaria epidemiological zones within 
Kenya [26]. Teso on the western border of Kenya with 
Uganda is within the lake endemic zone. Kwale in the 
southeast is within the coastal endemic zone. Turkana in 
the northwest is relatively arid and within the seasonal 
transmission zone. Mwea and Thika are within the cen-
tral highlands with Mwea being in the seasonal transmis-
sion zone and Thika in the low-risk zone.

For both sets of mosquitoes, An. gambiae s.l. larvae 
identified based on morphology [28] were collected, 
using standard larval 350  ml dippers, from multiple 
breeding sites to minimize chances of sampling siblings. 
The larvae were transported to the laboratory for rearing 
to adults (except for Turkana where rearing was carried 
out in the field due to the long distance to the laboratory). 
Larvae were reared in water collected from the larval 
sampling site or dechlorinated tap water at temperatures 
between 28  °C–31  °C and humidity between 80%–85% 
and fed on finely ground Sera Vipan staple diet™ (Sera, 
Germany) fish food. The resultant adult mosquitoes aged 
2–7 days old were analysed using WGS.

Sequencing and SNP calling
Sequencing and single nucleotide polymorphisms (SNP) 
calling was performed following the Ag1000G phase 3 

Fig. 1 Map of Kenya showing the study sites. The figure shows the sampling locations in Kenya in relation to Plasmodium falciparum prevalence 
rate in 2015 standardized to the age group 2 to 10 years using data obtained from the malariaAtlas R package [27]



Page 4 of 12Kamau et al. Malaria Journal          (2024) 23:122 

project protocol. Briefly, paired-end multiplex libraries 
were prepared using Illumina’s DNA preparation proto-
col with fragmentation using Covaris Adaptive Focused 
Acoustics. Multiplexes of 12 tagged individual mosqui-
toes were sequenced in three replicates using Illumina 
HiSeq 2000 and the Illumina HiSeq X technologies. 
Reads were aligned to the AgamP4 reference genome 
using BWA version 0.7.15 and indel realignment and SNP 
calling performed using GATK version 3.7.0. Quality 
control filters applied included the exclusion of individu-
als with median coverage < 10X, with no coverage across 
> 50% of the reference genome, or samples identified as 
cross-contaminated by a percentage of ≥ 4.5% using the 
protocols set out by the AG1000G project. Only techni-
cal replicates with the best sequencing coverage were 
retained. Additionally, site filters defined by the Ag1000G 
project were applied to exclude sites where SNP calling 
and genotyping was less reliable because the observed 
genotypes were not consistent with Mendelian inherit-
ance in laboratory crosses.

Taxonomic assignment
To investigate taxonomic status, individual mosquitoes 
were assessed against two sets of ancestry-informative 
markers (AIMs) used to distinguish An. gambiae from 
its sister taxa An. coluzzii and An. gambiae/An. coluzzii 
from An. arabiensis using publicly available data from 
the Anopheles 16 genomes project [29–31]. The data-
set, described by the Anopheles gambiae 1000 Genomes 
project [32], includes a set of AIMs SNPs informative in 
distinguishing taxa because they are exclusive to each 

taxonomic group discounting multiallelic sites and those 
with missing data. In total, 2612 and 700 AIMs were used 
to differentiate An. gambiae/An. coluzzii from An. ara-
biensis and An. gambiae from An. coluzzii, respectively. 
Individuals assessed against AIMs for distinguishing 
An. gambiae from An. coluzzii were called as An. gam-
biae when the fraction of coluzzii-like calls was < 0.12 
and An. coluzzii where this fraction was > 0.9. Individuals 
assessed against AIMs distinguishing An. gambiae/An. 
coluzzii from An. arabiensis were called as the latter 
when the fraction of arabiensis-like alleles was > 0.6. Indi-
viduals in-between these fractions represent other taxa.

Population structure
To compare the genomic composition of An. coluzzii in 
Kenya with other An. coluzzii cohorts, a Principal Com-
ponent Analysis (PCA) dimensionality reduction on the 
allele counts of 100,000 biallelic SNPs equally distributed 
across chromosome three so as to exclude known intro-
gressions was performed. Chosen SNPs had a minor 
allele frequency greater than 0.2% and no missing data. 
Using the same criteria for SNP selection, comparison of 
the evolutionary relationships of African An. coluzzii was 
carried out by constructing an unrooted Neighbour-Join-
ing tree with a city block distance metric. To determine 
whether An. coluzzii across Africa are connected to An. 
coluzzii in Kenya, genomic differentiation between popu-
lations using Hudson’s pairwise FST was computed [33]. 
To further investigate whether An. coluzzii in Kenya have 
a similar demography to other An. coluzzii, informative 
summary statistics including Nucleotide diversity (θπ), 

Table 1 Sampling locations in Kenya and the number of samples successfully sequenced, grouped by taxon

Location Latitude Longitude Year Month Taxon

An. arabiensis An. coluzzii An. gambiae An. 
quadriannulatus

Kwale − 4.572 39.257 2019 7 7 0 0 2

Mwea − 0.717 37.382 2007 6 18 0 0 0

2014 9 15 0 0 0

2020 2 46 0 0 0

2020 12 26 0 0 0

2021 1 29 0 0 1

2021 2 16 0 0 0

Teso 0.626 34.236 2013 8 24 0 4 0

2019 7 17 0 14 0

2019 12 43 0 17 0

Thika − 1.061 37.181 2019 7 45 0 1 0

2019 8 19 0 0 0

Turkana 3.717 34.857 2006 2 19 5 1 0

2019 1 51 13 0 0

2019 9 123 8 0 0



Page 5 of 12Kamau et al. Malaria Journal          (2024) 23:122  

Watterson’s theta (θW) and Tajima’s D were calculated. 
All analyses were performed using the open source and 
freely available malariagen_data python package.

Insecticide resistance
To investigate whether An. coluzzii in Kenya have target 
site mutations associated with insecticide resistance sim-
ilar to other African An. coluzzii, the malariagen_python 
package was used to calculate amino acid substitution 
frequencies based on the occurrence of non-synony-
mous SNPs at genomic sites of interest. These included 
the gene targeted by pyrethroid insecticides, the volt-
age-gated sodium channel (Vgsc; AGAP004707), the 
glutathione S-transferase gene conferring resistance to 
DDT (Gste2; AGAP009194), the Resistance to dieldrin 
gene (Rdl; AGAP006028) and the organophosphate tar-
get gene, acetylcholinesterase (Ace1; AGAP001356). To 
account for sequencing error and remove substitutions 
unlikely to be under selection, only amino acid substitu-
tions present at a frequency greater than 5% in at least 
one population were retained.

Results
Population sampling and sequencing
A total of 1130 individual mosquitoes were collected 
during this study from five locations in Kenya (Fig.  1; 
Table 1). All locations included relatively recent sampling 
(2019–2021) and samples from earlier collections (2006–
2014) were also available for Mwea, Teso and Turkana. 
A total of 744 mosquitoes with good quality extracted 
DNA were submitted for WGS, of which 564 passed all 
data quality control filters, with an average median cov-
erage of 36 X and minimum of 10 X. After alignment 
to the AGAMP4 reference genome, we discovered a 
total of 83,052,633 SNPs segregating within the samples 
from this study, of which 43,701,680 passed all site qual-
ity filters previously established by the Anopheles gam-
biae1000 Genomes Project phase 3 [32].

Taxon assignment
Taxon assignment within the An. gambiae complex is 
challenging because taxa are morphologically indistin-
guishable, and conventional genetic markers are based on 
a single locus that does not always reflect the ancestry of 
the rest of the genome [28, 29]. All samples in this study 
were morphologically identified as An. gambiae s.l., then 
the genomic data used to investigate the species. Using 
a set of ancestry-informative markers (AIMs) previously 
ascertained from samples with known species status [30, 
31], 498 samples were identified as An. arabiensis (ara-
biensis AIM fraction > 0.85; Additional file 1: Figure S1). 
Of the remaining samples, 37 were identified as An. gam-
biae (coluzzii AIM fraction < 0.1) and 26 were identified 

as An. coluzzii (coluzzii AIM fraction > 0.9). To provide 
additional confirmation of taxonomic status, a principal 
components analysis (PCA) was performed, and a neigh-
bour-joining tree (NJT) constructed using genomic data 
from this study together with samples from other African 
countries from the Anopheles gambiae 1000 Genomes 
Project and the study of Fontaine et al. [31] (Fig. 2). These 
analyses showed a clear grouping by species, with the 
position of Kenyan An. gambiae, An. arabiensis and An. 
coluzzii samples entirely consistent with the AIM results. 
On comparison of data originating from multiple taxa 
[31], a further 3 individuals that could not be identified 
via AIMs were confirmed to be Anopheles quadriannula-
tus based on the PCA and NJT.

Anopheles coluzzii populations in West Africa are com-
monly found to have experienced adaptive introgression 
of genetic material from An. gambiae within a genomic 
region towards the centromere of chromosome arm 2L, 
driven by selection for pyrethroid target-site resistance 
alleles [35–37]. AIM profiles revealed the majority of 
An. coluzzii from Kenya are either homozygous (38%) or 
heterozygous (46%) for introgression from An. gambiae 
towards the centromere of 2L (Additional file  1: Figure 
S1).

Anopheles coluzzii has not previously been reported in 
Kenya, but is a highly competent malaria vector in West 
and Central Africa. In the current study, the species were 
detected only in Turkana and across three different sam-
pling time points at frequencies of 20.0% (5 out of 25) in 
month 2 of 2006, 20.3% (13 out of 64) in month 1 of 2019 
and 6.1% (8 out of 131) in month 9 of 2019. Given the 
importance of this finding for malaria vector surveillance 
and control, the remainder of this report focuses on a full 
characterization of the Kenyan An. coluzzii. Analysis of 
genomic data from the other Anopheles taxa sequenced 
in this study will be reported separately.

Geographical population structure and genetic diversity
To explore the genetic relationship between the Ken-
yan An. coluzzii and conspecific populations from other 
countries, data from this study was combined with pre-
vious sequence data of An. coluzzii populations from 
inland West Africa (Burkina Faso, Mali), coastal West 
Africa (Côte d’Ivoire, Ghana), and Central Africa (Cam-
eroon, the Central African Republic, Angola) [34]. Single 
Nucleotide Polymorphisms (SNPs) from Chromosome 
3, which is free from polymorphic inversions, were used 
to perform a principal components analysis (PCA), com-
pute a neighbour-joining tree (NJT) and quantify the 
degree of allele frequency differentiation (FST) between 
cohorts from different locations. The PCA and NJT 
analyses grouped the Kenyan An. coluzzii most closely 
with An. coluzzii from inland West Africa (Mali, Burkina 
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Fig. 2 Taxon confirmation of Kenya An. coluzzii. Confirmation of taxon assignment using principal components analysis (PCA) 
and neighbour‑joining tree (NJT) analysis, comparing samples in this study with reference samples from the Anopheles gambiae 1000 genomes 
project from inland West Africa (Burkina Faso, Mali), coastal West Africa (Cote d’Ivoire, Ghana), Central Africa (Cameroon, the Central African Republic, 
Angola) and the study of Fontaine et al. [31]. a PCA. b NJT
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Faso) and northern Cameroon (Fig.  3). The FST results 
were consistent with these analyses, finding the lowest 
FST between Kenya, Mali and Burkina Faso (FST 0.006–
0.007 for both comparisons; Additional file 1: Table S1). 
These results show a lack of strong population structure 

between An. coluzzii from Kenya and more northerly 
regions of West and Central Africa.

To further explore whether Kenyan An. coluzzii share 
a genomic profile similar to northern West and Central 
Africa, a PCA targeting the 2La and 2Rb regions of the 

Fig. 3 Population genetic structure of Kenyan An. coluzzii. The figure shows the analysis of geographical population structure within An. coluzzii, 
comparing samples from Turkana, Kenya collected in this study with reference samples from the Ag1000G project and Fontaine et al. [31]. Kenyan 
An. coluzzii are most closely related to An. coluzzii from inland West Africa (Mali, Burkina Faso) and Northern Cameroon. a PCA. b NJT
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genome was performed to investigate whether the popu-
lations share the same 2La and 2Rb inversion karyotype. 
Anopheles coluzzii from Kenya have the same 2La/2Rb 
karyotype found in An. coluzzii from Burkina Faso and 
Mali only, supporting the finding that they are genetically 
most similar to these populations (Additional file 1: Fig-
ure S2). To investigate whether the Kenyan An. coluzzii 
have a similar demographic history to An. coluzzii popu-
lations from other countries in Africa, genetic diversity 
summary statistics for mosquito cohorts grouped by geo-
graphical region and year of sampling were computed. 
Nucleotide diversity, the density of segregating sites 
(Watterson’s theta) and allele frequency spectra (Tajima’s 
D) in Kenyan An. coluzzii were similar to An. coluzzii 
from West Africa (Nucleotide diversity, 0.026; Watter-
son’s theta, 0.033; Tajima’s D, − 0.961; Additional file  1: 
Figure S3), suggesting lack of genetic isolation.

Insecticide resistance
To investigate whether Kenyan An. coluzzii have muta-
tions associated with target-site resistance to insecticides, 
we computed amino acid allele frequencies across four 
genes encoding insecticide binding targets for cohorts 
with at least ten data points: Vgsc (AGAP004707), 
Gste2 (AGAP009194), Rdl (AGAP006028) and Ace1 
(AGAP001356). Kenyan An. coluzzii were found to have 
the Vgsc-L995F substitution associated with resistance 
to DDT and pyrethroids, at 62% frequency (Fig.  4a) 
[38]. This allele is also found at high frequency in An. 
coluzzii populations throughout West and Central Africa. 
In addition, Kenyan An. coluzzii displayed the double 

mutant Vgsc-V402L + I1527T substitution at 38% fre-
quency. This double mutant is also present in other An. 
coluzzii populations. Additionally, Kenyan An. coluzzii 
have the Gste2-I114T mutation at high frequency (64%), 
which confers metabolic resistance to DDT [39] (Fig. 4b) 
and also observed at high frequency in An. coluzzii popu-
lations from West and Central Africa.

Two haplotypes have been previously associated with 
resistance to dieldrin in An. coluzzii, Rdl-A296G/T345M 
widely distributed across Africa and Rdl-A296S/T345S 
previously only reported from Burkina Faso [40]. The 
296/345 substitution pair was observed in Burkina Faso 
and also in Mali and Kenya, but the frequency was very 
low, ~ 5%, in An. coluzzii from Kenya (Additional file 1: 
Figure S4). A mutation in the Acetylcholinesterase gene, 
Ace1-G280S, was previously linked to organophosphate 
and carbamate resistance [41]. Although the muta-
tion is present in An. coluzzii from coastal West Africa 
(i.e., Côte d’Ivoire and Ghana), it was not present in An. 
coluzzii from Kenya (Additional file 1: Figure S5).

Discussion
A proper understanding of vector bionomics within the 
context of the malaria transmission system is important 
for the choice and successful implementation of vec-
tor control interventions. The current study sought to 
improve this understanding by analyzing the distribution 
of An. gambiae s.l. sibling species from five sites in Kenya, 
one each in the different malaria epidemiological zones. 
Based on analysis of whole-genome data we report, for 
the first time in Kenya, the presence of An. coluzzii.

Fig. 4 Insecticide resistance profiles of Kenyan An. coluzzii. The figure shows amino acid substitution frequencies in genes associated 
with target‑site resistance to DDT and pyrethroids. a Vgsc (AGAP004707). b Gste2 (AGAP009194)
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Anopheles coluzzii is a highly competent malaria vec-
tor in West and Central Africa. All the An. coluzzii sam-
ples found in this study were collected from Turkana in 
Northwest Kenya. This included mosquitoes collected 
across multiple years and months spanning both the 
dry and rainy season, confirming the presence of An. 
coluzzii in the region since at least 2006 (Table 1). Sea-
sonal shifts in An. gambiae species complex composi-
tion linked to adaptation to ecology are known to occur 
[42, 43]. Similar to mosquito collection from Turkana, 
mosquitoes that were analyzed from the other sites 
included collections from multiple years and seasons, 
discounting the possibility that the failure to detect An. 
coluzzii from these sites could be related to seasonal-
ity. Past failure to detect An. coluzzii in Kenya is likely 
associated with the fact that malaria vector surveillance 
and identification has tended to focus on historically 
known primary vectors using species-specific mark-
ers. For example, in Turkana, a past study reported all 
mosquitoes identified as An. arabiensis, but only 84.8% 
of samples reacted in PCR diagnostic tests based on 
species-specific nucleotide sequences in the ribosomal 
DNA intergenic spacers of the An. gambiae species 
complex [44, 45]. Failure to identify specimens in such 
molecular assays is usually explained away as failure 
in the assay itself due to factors such as poor-quality 
DNA or other associated factors. The current analysis 
exploited WGS allowing the use of a large number of 
markers distributed across the entire genome to detect 
cryptic and/or unknown species demonstrating how 
whole genomic sequencing can be configured to sup-
port routine surveillance to accurately identify present 
and shifting vector distributions, adaptive evolutionary 
changes and populations structuring, integral to under-
standing of malaria transmission dynamics [46].

When the Kenya An. coluzzii were compared with pop-
ulations from the northerly regions of West and Central 
Africa, they showed a lack of strong population genetic 
structure evidenced by clustering on the PCA and NJT 
and low FST, suggesting relatively unrestricted gene flow 
across a northerly belt spanning continental Africa. In 
support of this notion, Kenyan An. coluzzii had a similar 
genetic diversity to other West and Central African popu-
lations. Exploration of the 2La/2Rb inversion karyotypes, 
which has previously been linked to aridity and increases 
in frequency with this cline [47, 48] revealed that Kenyan 
An. coluzzii have the same inversion karyotype found in 
Burkina Faso and Mali at both loci, supporting the find-
ing of genetic similarity to these populations. The find-
ing that the 2La/2Rb karyotype is the same as that found 
in arid West and Central Africa is consistent with its 

environmental association, since Turkana in Kenya is arid 
to semi-arid, experiencing high temperatures and highly 
seasonal rainfall. The presence of An. coluzzii has also 
been documented in Somalia, which shares a similar arid 
to semi-arid ecosystem [8]. These findings suggest Ken-
yan An. coluzzii are not an isolated population, nor have 
they experienced any recent bottlenecks or other distinct 
demographic events.

Investigation of the insecticide resistance profiles of 
Kenyan An. coluzzii revealed the presence of the Vgsc-
L995F substitution associated with resistance to DDT 
and pyrethroids [38]at 62% frequency and the Gste2-
I114T mutation which confers metabolic resistance 
to DDT [39] at a frequency of 64%. These alleles are 
also found at high frequency in An. coluzzii popula-
tions from West and Central Africa [49–51]. In addi-
tion, Kenyan An. coluzzii displayed the double mutant 
Vgsc-V402L + I1527T substitution at 38% frequency also 
present in other An. coluzzii populations and recently 
observed to be increasing in frequency in An. coluzzii in 
Burkina Faso [52]. The V402L substitution has been func-
tionally validated to confer insecticide resistance with 
reduced fitness cost to the mosquito when compared to 
L995F [53] and the fact that V402L is almost exclusively 
found in combination with I1527T suggests a strongly 
synergistic effect that may further increase fitness in the 
presence of insecticides.

Previous studies have documented resistance to pyre-
throids in An. gambiae s.l. in Kakuma (Turkana County) 
with enzymatic resistance being implicated [54]. Both 
ITNs and IRS have historically been used to prevent 
malaria in the area. The finding of mutations associated 
with resistance to insecticides is therefore not surpris-
ing and fits with the picture of widespread and increasing 
insecticide resistance in the country [55]. The presence 
of the V402L + I1527T substitution in Kenya is concern-
ing, because variants conferring stronger pyrethroid 
resistance could compromise the efficacy of new pyre-
throid + PBO LLINs, currently considered among the 
most effective defense against resistant populations [56].

Increased urbanization promotes retention of surface 
water and is associated with water distribution and drain-
age systems that provide suitable habitat for Anopheles 
mosquitoes. The refugee camp from which the samples 
were collected is a highly populated region that experi-
ences low level local transmission and has recently suf-
fered recurrent epidemics [46]. Historically, the area has 
received little attention regarding malaria intervention, 
because the climate was considered unsuitable for known 
vector species, except An. arabiensis, considered a less 
competent vector.
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Conclusion
The observation that An. coluzzii, an efficient vector 
of malaria which can tolerate more arid conditions and 
thrive in both rural and urban settings occurs in Kenya 
but has not been reported to date means that this vector 
is potentially contributing to malaria transmission in Tur-
kana County and malaria control interventions currently 
in place may be ineffective against it. This finding along-
side the recent finding of An. stephensi in Turkana and 
other regions of northern Kenya emphasizes the need for 
re-evaluation of the distribution, bionomics and epidemi-
ological significance of the local vector populations in the 
country. This is the only way the country will be able to 
ensure vector control approaches are sufficiently targeted 
at the myriad of Anopheles vectors responsible for trans-
mission in the different settings in Kenya.
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