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Abstract 

Background  Malaria is a potentially life-threatening disease caused by Plasmodium protozoa transmitted by infected 
Anopheles mosquitoes. Controlled human malaria infection (CHMI) trials are used to assess the efficacy of interventions 
for malaria elimination. The operating characteristics of statistical methods for assessing the ability of interventions 
to protect individuals from malaria is uncertain in small CHMI studies. This paper presents simulation studies comparing 
the performance of a variety of statistical methods for assessing efficacy of intervention in CHMI trials.

Methods  Two types of CHMI designs were investigated: the commonly used single high-dose design (SHD) 
and the repeated low-dose design (RLD), motivated by simian immunodeficiency virus (SIV) challenge studies. In 
the context of SHD, the primary efficacy endpoint is typically time to infection. Using a continuous time survival model, 
five statistical tests for assessing the extent to which an intervention confers partial or full protection under single dose 
CHMI designs were evaluated. For RLD, the primary efficacy endpoint is typically the binary infection status after a spe-
cific number of challenges. A discrete time survival model was used to study the characteristics of RLD versus SHD 
challenge studies.

Results  In a SHD study with the continuous time survival model, log-rank test and t-test are the most powerful 
and provide more interpretable results than Wilcoxon rank-sum tests and Lachenbruch tests, while the likelihood 
ratio test is uniformly most powerful but requires knowledge of the underlying probability model. In the discrete 
time survival model setting, SHDs are more powerful for assessing the efficacy of an intervention to prevent infection 
than RLDs. However, additional information can be inferred from RLD challenge designs, particularly using a likelihood 
ratio test.

Conclusions  Different statistical methods can be used to analyze controlled human malaria infection (CHMI) experi-
ments, and the choice of method depends on the specific characteristics of the experiment, such as the sample size 
allocation between the control and intervention groups, and the nature of the intervention. The simulation results 
provide guidance for the trade off in statistical power when choosing between different statistical methods and study 
designs.
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Background
Malaria is a potentially life-threatening disease caused by 
Plasmodium protozoa, which are transmitted by the bite 
of an infected female Anopheles mosquito. An estimated 
241 million cases of malaria occurred worldwide in 2020 
and there were an estimated 627,000 deaths from malaria 
globally [1]. While vector control, insecticide-treated 
mosquito nets, anti-malarial drugs, and indoor spraying 
with residual insecticides are powerful prevention tools 
that have helped to reduce disease burden, insecticide 
resistance and anti-malarial drug resistance are recur-
ring problems [1]. The RTS,S/AS01 and R21-Matrix-M 
are the only vaccines thus far shown to confer protection 
from clinical malaria, albeit only partial protection that 
is short-lived and seems to depend on the level of back-
ground transmission [2–5]. There is active research into 
additional vaccine concepts and prophylactic drug regi-
mens that will be needed for malaria elimination [6–8].

A controlled human malaria infection (CHMI) trial is 
a powerful tool for assessing the efficacy of a candidate 
intervention. A typical CHMI trial enrolls and rand-
omizes healthy volunteers to control or intervention and 
exposes or “challenges” participants at a single point in 
time with infectious bites from laboratory-reared Anoph-
eles mosquitoes carrying Plasmodium falciparum (P. 
falciparum) sporozoites, through needle injection of a 
defined number of aseptic cryopreserved sporozoites 
[9–12], or by the induced blood-stage model in which 
volunteers are inoculated with P. falciparum-infected 
erythrocytes [13]. Volunteers are typically followed for 28 
days post-challenge [14] and tested for malaria infection 
using thick blood smear or quantitative PCR [9]. Most 
studies are designed such that all individuals in the con-
trol group are infected after this single challenge.

In the context of a CHMI trial, an intervention may 
influence malaria infection by offering either full pro-
tection or partial protection for a given individual. Fully 
protected individuals have negative malaria test results 
throughout follow-up, whereas partially protected indi-
viduals acquire infection but with delayed timing relative 
to the control group. Single challenge CHMI studies often 
use an infection indicator and time to test positivity as 
the primary efficacy outcomes of interest [14–17]. How-
ever, it is unknown which statistical methods best assess 
an intervention’s ability to partially and/or fully protect 
individuals from malaria. Classical methods for the anal-
ysis of binary outcomes, log-rank tests and tests of bino-
mial infection probabilities, are commonly employed. 
However, it has not yet been established whether these 
have adequate statistical performance in the small sample 
sizes typical of CHMI studies, or whether there are better 
analysis methods or variations. With a continuous time 
survival model, simulation studies were used to evaluate 

the power of five statistical tests for assessing the extent 
to which an intervention confers partial or full protection 
in P. falciparum challenge studies. In doing so, software 
was developed for implementing these tests and for com-
paring their statistical performance under various design 
and simulation model parameter settings. This software 
is available through an publicly available R package and 
may be useful for future challenge study design.

A variety of statistical design and analysis methods 
have been developed to evaluate candidate HIV vaccines 
in simian immunodeficiency virus (SIV) challenge stud-
ies in nonhuman primates (NHPs). In particular, Regoes 
et al. and Hudgens and Gilbert have shown that repeated 
low dose challenge trial designs can be adequately pow-
ered to test for vaccine efficacy to prevent infection [18, 
19]. Whereas a high-dose challenge study is designed to 
infect all or a high proportion of control participants, a 
’low’ dose challenge is designed to infect only a fraction, 
and in so doing there is additional information generated 
as participants are repeatedly challenged. In the infectiv-
ity study described in Sheehy et  al. [20], five out of six 
participants receiving 2500 sporozoites intradermally, 
three out of six participants receiving 2500 sporozoites 
intramuscularly and six out of six participants receiving 
25,000 sporozoites intramuscularly were infected. While 
dose-ranging challenge trials in malaria have been con-
ducted to identify the dose required to achieve 100% 
infection in the control group [11, 20–22], based on a 
review of the literature repeated low dose challenge stud-
ies have not been investigated for their utility in evalu-
ating efficacy and mechanisms thereof. The statistical 
power of single high dose versus repeated low dose chal-
lenge study designs for evaluating efficacy in malaria or 
other human challenge studies was assessed using a dis-
crete time survival model.

Methods
Continuous time survival model
For SHD, the primary efficacy endpoint is typically a con-
tinuous time-to-event variable, time to infection. This 
section describes using a continuous time survival model 
to evaluate the power of five statistical tests for assessing 
the extent to which an intervention confers partial or full 
protection under single dose CHMI designs. The model 
is motivated by collective data from recent CHMI stud-
ies. Reflecting the challenge models currently used in 
the field, it is assumed that the single challenge results in 
malaria infection in all control recipients and only con-
sider designs with one intervention and a control group. 
In practice, it is not uncommon for studies to include 
intervention groups with different doses or intervention 
regimens which are compared to the control group indi-
vidually or pooled together to assess efficacy [23, 24].
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Simulation models
Sama et  al. [25] suggested that Weibull distribution is a 
reasonable choice to approximate the lifespans of P. fal-
ciparum infections. The fit of Weibull distribution was 
examined using data from five previously published 
CHMI studies [26] and it was found that the Weibull dis-
tribution aligns well with the data. Additional file 1: Fig. 
S1 shows the quantile-quantile plot of Weibull distribu-
tion against data from five CHMI studies. The Weibull 
model was also fitted to data for 12 participants from two 
recent CHMI studies [27, 28] and the model fit the data 
well. Therefore, the Weibull distribution was used to sim-
ulate the time to infection.

Let T01,T02, ...,T0n0 and T11,T12, ...,T1n1 denote the 
times to test positivity for n0 individuals in the con-
trol group and n1 individuals in the intervention group, 
respectively. Times to test positivity for the control group, 
T01,T02, ...,T0n0 , were simulated as i.i.d draws from the 
Weibull distributions with shape parameter k and scale 
parameter �0 such that the probability density function 
is of the form f (T0i = t; k , �0) = k�k0t

k−1e−(�0t)
k . Delays 

in time until test positivity conferred by the intervention, 
T11,T12, ...,T1n1 , were simulated under i.i.d Weibull dis-
tributions with shape parameter k and scale parameter 
�1 . Under this model, the delay in time to infection, i.e. 
partial protection, is parameterized by a reduction in the 
hazard rate in the intervention group. Let β be the hazard 
ratio between the intervention and control groups, where 
β = ( �1

�0
)k is constant in time.

A intervention is said to confer ‘full protection’ to an 
individual if that individual never becomes infected fol-
lowing challenge, and therefore the time to test positiv-
ity is not observed due to administrative censoring. To 
reflect full protection for some individuals in the inter-
vention group, a Bernoulli variable with mean ρ was used 
to indicate whether the individual is fully protected, in 
which case the value of T1i was set to be censored at the 
end of follow-up. Therefore, for individuals in the control 
group, the probability of being censored is S(T0i; k , �0) 
where S is the survival function for the Weibull distri-
bution with parameters k and �0 . For individuals in the 
intervention group, the probability of being censored is 
ρ + (1− ρ)S(T1i, k , �1) . Note that CHMI studies gen-
erally do not incorporate censoring due to participant 
loss to follow-up, hence simulations assumed no loss to 
follow-up.

Also reflecting commonly-employed CHMI designs, 
the total sample size N = n0 + n1 was set to be 16, 28, 
or 40 and the sample size allocation ratio n1n0 to be 1 or 
3. While equal allocation to control and intervention 
is likely optimal in most settings, allocating more par-
ticipants to the intervention group has advantages for 
assessing secondary objectives such as evaluating safety 

and correlates of protection. Data from 12 placebo 
recipients from two recent CHMI trials [27, 28] were 
used to simulate time to test positivity (qRT-PCR≥
250) for the control group. Parameters k and �0 for the 
Weibull distribution were estimated by maximum like-
lihood. For the intervention group, the hazard ratio 
between the intervention group and control group, β , 
was set to take values from 0.2 to 1 with a step size of 
0.2. Next, �1 was solved given β , k , �0 and was used to 
simulate time to test positivity under a Weibull distri-
bution with parameters k and �1 . To incorporate the full 
protection effect in the intervention group, a Bernoulli 
random variable with mean ρ was simulated to indicate 
whether an individual is fully protected, in which case 
the infection time was set to be censored at the end 
of follow-up (Day 28); ρ takes values from 0 and 0.2. 
Note that if β = 1 and ρ = 0 , the intervention group is 
simulated under the null model; if β = 1 and ρ > 0 , the 
intervention effect consists only of full protection; and 
if β < 1 and ρ > 0 , the intervention effect is a mixture 
of full and partial protection. Figure 1 shows an exam-
ple of the simulated data under a mixture intervention 
effect. Table 1 shows the mean time to infection under 
the partial protection model.

Statistical analysis
The power of five statistical tests for assessing an inter-
vention’s efficacy was evaluated using Monte Carlo 
simulations. The two-sample t-test is used to com-
pare the means of time to positivity between the con-
trol and intervention groups. The Wilcoxon rank-sum 
test is used to compare the distributional differences 
of time to positivity between the control and interven-
tion groups. The log-rank test is used to compare the 
infection time distributions between the control and 
intervention groups. The Lachenbruch two part test 
compares the groups with respect to both the infection 
probability and the time to infection among those who 
become infected [29]. A parametric likelihood ratio 
test for detecting a mixture intervention effect was also 
investigated (see supplementary material). The likeli-
hood ratio test was included as a reference as it is uni-
formly most powerful, but it requires knowledge of the 
underlying probability model. Therefore, the investiga-
tion focuses on which of the other tests is most power-
ful in small challenge-study settings.

Discrete time survival model
For RLD, the primary efficacy endpoint is typically the 
infection status after a specific number of challenges. 
Therefore, a discrete time survival model [19] was 
used to study the characteristics of RLD and compare 
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against SHD. Under this model, time is discrete and 
measured in number of challenges, whereas in the con-
tinuous time survival model time is measured in days 
since challenge. This section describes the evaluation of 
the power of the log-rank and likelihood ratio tests for 
assessing efficacy of an intervention under hypothetical 
SHD and RLD CHMI study designs.

Simulation models
Let p0 and p1 denote the probabilities that each of n0 
individuals in the control group and n1 individuals in the 
intervention group become infected following a single 

challenge. Let ρ be the probability that the intervention 
can fully protect an individual from the challenge. A 
strong assumption that the probability of infection is 
independent of the number of prior exposures was made. 
Hence, the probability of remaining uninfected following 
t challenges for an individual in the control group is 
(1− p0)

t and for an individual in the intervention group 
it is (1− p1)

t(1− ρ)+ ρ . The intervention efficacy was 
defined as the reduction in relative risk of infection per 
exposure, i.e. 1− p1(1−ρ)

p0
 . If ρ = 0 , this is a ‘leaky model’ 

in the sense that all individuals will eventually become 
infected if followed long enough, and with ρ > 0 it is a 
‘mixture model’, as described in previous literature [19, 
30, 31].

Let cmax denote the maximum number of challenges 
for the trial. To mimic typical SHD challenge studies in 
which all individuals become infected following challenge 
[14, 16, 17, 32], cmax = 1 and p0 = 1 was set. To explore 
the RLD challenge design, variations were considered 
with cmax set at 1, 3, 5 and p0 set at 0.25, 0.5. Participants 
are challenged up to cmax times until infection.

Again, the total sample size N = n0 + n1 was set to be 
16, 28, or 40 and the sample size allocation ratio n1n0 to be 1 
or 3. For the control arm, p0 = 1 and cmax = 1 were set 
for the SHD design and p0 = 0.25, 0.5, 0.75 and 
cmax = 1, 3, 5 for the RLD design. The relative infection 
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Fig. 1  Example of simulated data for an intervention that confers full protection in 20% of participants in the intervention group and delays time 
to infection by 40% among those who become infected. Boxplots of the times to infection (left) and empirical cumulative infection probabilities 
(right) are shown for intervention and control groups. Fully protected individuals have a time of infection that is administratively censored 
at the end of follow-up (Day 28)

Table 1  Mean time to infection based on simulation parameters 
under scenarios with ρ = 0

β Mean time to infection in 
control group

Mean time to infection 
in intervention group

1.0 8.01 8.01

0.8 8.01 8.37

0.6 8.01 8.85

0.4 8.01 9.57

0.2 8.01 10.94
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probability p1p0 takes values from 0.2 to 1 with a step size of 
0.2. The full protection probability ρ is 0 (leaky model) or 
0.2 (mixture model). When p1p0 = 1 and ρ = 0 , the data 
are simulated under the null hypothesis that the inter-
vention has no effect. Additional file 1: Fig. S2 shows the 
simulated probability of remaining uninfected against the 
number of challenges under the leaky and mixture model.

Statistical analysis
Under the leaky model, the power of the log-rank and 
likelihood ratio tests for assessing the efficacy of the 
intervention was evaluated using Monte Carlo simula-
tions. The log-rank test is used to assess whether there is 
a difference in the failure time (i.e. infection time) distri-
bution between the control and intervention group, and 
the failure time is discrete and measured by the number 
of challenges until infection. Individuals who are not 
infected by the end of follow-up are censored at cmax 
challenges. The likelihood ratio test, described in Hudg-
ens and Gilbert [19], is used to test the null hypothesis 
that the intervention has no effect in reducing the per-
challenge infection probability, i.e. H0 :

p1
p0

= 1 , against 
the alternative hypothesis that p1

p0
< 1 . Under a SHD 

design and mixture model, only the power of the log-rank 
test was evaluated because the model is not identifiable 
for inferring both ρ and p1p0.

Results
Continuous time survival model
The operating characteristics of the five statistical tests 
for assessing an intervention’s efficacy described in 
the methods section were evaluated using 1000 Monte 
Carlo simulations. The comparisons with a total sample 
size of N = 28 are shown in Fig.  3. Simulation results 
with N = 16, 40 are shown in Additional file  1: Fig. S3, 
S4. Type I error was assessed in scenarios under null 
hypothesis ( ρ = 0 and β = 1 ). When ρ = 0 and hazard 
ratio = 1. As expected, when there is no full protection 
effect ( ρ = 0 ), it is observed that the log-rank test is the 
most powerful test as the data are generated under the 
assumption of proportional hazards.

When the intervention effect is a mixture of partial and 
full protection, the mixture likelihood ratio test is the 
most powerful test since the data are generated under 
the mixture model and the proportional hazards assump-
tion no longer holds. However, the likelihood ratio test 
relies heavily on the assumed failure time distribution 
and will become less reliable when the assumption is vio-
lated. Comparing the performance of the tests that do 
not make this strong distributional assumption, the dif-
ference in power between the t-test and the log-rank test 

varies with the sample size allocation between the con-
trol and intervention groups. This is because the optimal 
sample size allocation for the t-test depends on the ratio 
of the variance in the time to infection between the two 
groups. For example, with 20% full protection ( ρ = 0.2 ) 
and a 40% reduction in hazard of infection ( β = 0.6 ), the 
log-rank test is 15% more powerful than the t-test (abso-
lute difference in power is 15%) when n1n0 = 1 . However, 
when n1n0 = 3 , the t-test is 20% more powerful than the 
log-rank test  (see Fig.  2). To help explain this phenom-
enon, assume that the variance is known and the z-test is 
used instead of the t-test. The variance of the z-test statis-
tic is minimized when the ratio of the variance between 
the intervention and control groups is equal to the square 
of the ratio of the sample sizes between the interven-
tion and control groups. Indeed, Additional file 1: Fig. S5 
shows that the power of the t-test is highest when n1n0 = 3 , 
which is approximately the ratio of standard deviations 
in the intervention and control groups under ρ = 0.2 . 
Under the assumption of no loss to follow-up, time to 
positivity in the intervention group was truncated at 28 
days, hence the t-test should be interpreted as a test of 
a difference in truncated means and should not be used 
when the assumption of no loss to follow-up is violated. 
Given the concerns about small-sample performance of 
asymptotic-based tests, randomization-based tests, i.e. 
permutation tests, were also evaluated (Additional file 1: 
Fig. S6). It is generally found that asymptotic-based tests 
are slightly more powerful than permutation tests.

The Lachenbruch test statistic is a linear combination 
of the Wilcoxon rank-sum test conditional on infec-
tion status and a binomial test of infection rates. Based 
on our simulation scheme, it is possible to observe 
that none of the individuals in the intervention group 
are fully protected by chance for some values of ρ . In 
this case, the Lachenbruch test reduces to the Wil-
coxon test. From the simulation results, the power of 
the Lachenbruch test is comparable to that of the t-test 
and both tests tend to be more powerful compared to 
the log-rank test as the sample size increases. However, 
that the Wilcoxon rank-sum test conditional on infec-
tion status breaks the randomization. Therefore, in 
practice the statistical inference may be confounded by 
other variables that differ between infected individuals 
in the two treatment groups, i.e. it is subject to post-
randomization selection bias [33, 34]. For this reason, 
its use in general practice is not advocated.

Discrete time survival model
The operating characteristics of the log-rank test and 
likelihood ratio test described in the methods section 
were evaluated using 1000 Monte Carlo simulations. As 
shown in Additional file  1: Table  S1, the power of the 
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log-rank and likelihood ratio tests increases as a function 
of the maximum number of challenges for a RLD design. 
Therefore, to compare the SHD and RLD designs, the 
focus is on on cmax = 1 for the SHD design and cmax = 5 
for the RLD design. The power and type I error compari-
sons based on a total sample size of N = 28 and n1n0 = 1 
are shown in Fig. 3. It is observed that statistical tests in 
the setting of a SHD design tend to be conservative when 
intervention efficacy is low. This is due to the boundary 
problem that when p0 = 1, ρ = 0 and p1 is close to 1, all 
simulated participants may become infected by chance 
and there is no variability in the dataset. When compar-
ing a SHD design to a RLD design, both the log-rank and 
likelihood ratio tests are found to have greater statistical 
power regardless of whether the intervention is leaky or 
a mixture model. This observation is consistent across 
different values of N ,

n1
n0

 , and p0 (see supplementary 
material). Thus, the results demonstrate that the SHD 
challenge design is superior to the RLD challenge design 

in terms of statistical power for our simulation settings. 
However, while the RLD challenge design has lower sta-
tistical power as compared to SHD design, it has advan-
tages for the study of immune correlates and for further 
understanding the induction of natural immunity [35, 
36]. These results could provide a guidance for the trade 
off in statistical power when choosing a RLD design over 
a SHD design.

Discussion
A variety of statistical methods can be applied for analyz-
ing controlled human malaria infection (CHMI) studies. 
A continuous time survival model was used to evaluate 
and compare the power of t-tests, log-rank tests, Wil-
coxon rank-sum tests, Lachenbruch tests, and likeli-
hood ratio tests in P. falciparum challenge studies. While 
the likelihood ratio test is uniformly most powerful, it 
requires knowledge of the underlying probability model. 
Comparing the performance of the tests not relying on 
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Fig. 2  Power and type I error comparisons between log-rank, t-test, Wilcoxon, and Lachenbruch tests of differences between groups 
regarding time to malaria positivity. Results are based on simulations with total sample size N = 28 . The left panels demonstrate the power 
of the log-rank test with different sample size allocations. Triangles represent simulations with n1

n0
= 1 and circles represent simulations with n1

n0
= 3 . 

The right panels demonstrate the absolute difference in power when comparing the t-test, Wilcoxon test, and Lachenbruch test to the log-rank test. 
The log-rank test is less powerful if the absolute power difference is negative. The top panels are based on simulations with no full protection effect 
( ρ = 0 ), with hazard ratio = 1, the points represent the type I error. The bottom panels are based on simulations with 20% full protection ( ρ = 0.2)
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strong model assumptions, it is found that the log-rank 
test and t-test are the most powerful. Importantly, these 
tests also provide more interpretable results than do the 
Wilcoxon rank-sum and Lachenbruch tests. The dif-
ference in power between the t- and log-rank tests var-
ies with the sample size allocation between the control 
and intervention groups, due to the fact that the optimal 
power for the t-test depends on the ratio of variance and 
the ratio of sample size between two groups. It is found 
that the type I error rate is appropriately controlled for 
asymptotic-based tests even with the small sample sizes 
typical of CHMI studies. The simulations assumed the 
only censoring mechanism is administrative censoring at 
the end of the study. Censoring for loss to follow-up can 
be accommodated under the some of the analytic meth-
ods that were investigated here, such as the log-rank test 
and the likelihood ratio test, however, the impact of loss 
to follow-up was not investigated in the simulation stud-
ies since CHMI studies generally do not incorporate cen-
soring due to participants loss to follow-up.

This simulation study focused on the infection sta-
tus and time to infection hence may not encapsulate the 
complete range of complexities that are characteristics of 
the CHMI design such as the frequency of sample collec-
tion and variations in parasite kinetics. While these fac-
tors also play an important role in CHMI studies, they 
were not within the scope of the investigation. Further 

research that explore these impacts could provide a more 
comprehensive understanding of CHMI studies.

Motivated by the RLD for simian immunodeficiency 
virus (SIV) challenge studies in nonhuman primates, 
whether RLDs are superior to SHDs in the context of 
CHMI experiments was also investigated. A discrete 
time survival model was used to compare the power of 
log-rank and likelihood ratio tests in different simula-
tion settings. It is found that SHDs are more powerful for 
assessing the efficacy of an intervention to prevent infec-
tion. However, it should be noted that additional infor-
mation can be inferred from RLD challenge designs. In 
particular, using a likelihood ratio test, a partial interven-
tion effect as measured by a reduction in the per-chal-
lenge infection probability can be distinguished from a 
full protection effect. This is under the assumption that 
the infection probability varies with the number of chal-
lenges while the full protection effect is time-invariant.

There are many possible future study directions 
regarding design and analysis of RLD challenge studies 
in the context of malaria. The discrete time simulation 
studies and all prior methodology for repeated chal-
lenge designs assume that the malaria infection prob-
ability is the same across individuals and that it does 
not vary with the number of challenges. This is an over-
simplification of the natural infection mechanism and 
immunological learning that occurs following expo-
sure. Hudgens and Gilbert [19] suggested using a beta 
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Fig. 3  Power and type I error comparisons between single high-dose and repeated low-dose challenge study designs. The results are based 
on simulations with n0 = n1 = 14, p0 = 1 for the SHD design, p0 = 0.5 and cmax = 5 for the RLD design. The left panel demonstrates the scenario 
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with 20% full protection ( ρ = 0.2 ) and only log-rank test is evaluated With p1/p0 = 1 and ρ = 0 , the points represent the type I error
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distribution model for the infection probability such 
that the control and intervention groups are assumed 
to have the same coefficient of variation but possibly 
different means. Extending this or a related model to 
accommodate an infection probability that varies with 
the number of challenges is a topic for future research.

The comparison of different statistical tests is based 
on simulated data where the response is homogene-
ous within the control group and heterogeneous within 
the intervention group. The parameters used for the 
simulations are based on malaria challenge trials and 
therefore reflect data for this setting. Whether the con-
clusions can be generalized to other pathogens such as 
dengue and influenza warrants further investigation.

A variation on the above RLD design would be to 
re-challenge all participants, even those who become 
infected after a given challenge, up to a maximum num-
ber of challenges. This design has the advantage that it 
would potentially allow one to evaluate how both full 
and partial protection vary as a function of exposure 
and infection history, and thus provide new insights 
into mechanism of action and correlates of protec-
tion. Such designs have been used in challenge studies 
for malaria [35], Shigella [37], tuberculosis [38], noro-
virus [39], pneumococcus [40], and Enterotoxigenic 
Escherichia coli (ETEC) [41]. While most of these stud-
ies aimed to investigate the induction of natural immu-
nity due to previous exposure, few placed emphasis on 
evaluation of vaccine efficacy. Transition models [42] 
may be useful for modelling the dependence of infec-
tion status on previous exposure and infection history. 
Alternatively, ordinary logistic regression or general-
ized estimating equations [42–44] may be used to do 
inference conditional on a given exposure and infection 
history, or marginalized transition models [45] may be 
used to evaluate the marginalized effect of intervention 
and provide consistent estimates even if the depend-
ence model is mis-specified. The optimal statistical 
framework and inferential approach deserve further 
investigation. As well, the feasibility of RLD malaria 
challenge trials needs to be explored. These investiga-
tions and advancements in modeling, immunology, and 
clinical research will contribute towards the ultimate 
goal of malaria elimination.
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