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Abstract

Background: Gum Arabic (GA), a nonabsorbable nutrient from the exudate of Acacia senegal, exerts a powerful
immunomodulatory effect on dendritic cells, antigen-presenting cells involved in the initiation of both innate and
adaptive immunity. On the other hand GA degradation delivers short chain fatty acids, which in turn have been
shown to foster the expression of foetal haemoglobin in erythrocytes. Increased levels of erythrocyte foetal
haemoglobin are known to impede the intraerythrocytic growth of Plasmodium and thus confer some protection
against malaria. The present study tested whether gum arabic may influence the clinical course of malaria.

Methods: Human erythrocytes were in vitro infected with Plasmodium falciparum in the absence and presence of
butyrate and mice were in vivo infected with Plasmodium berghei ANKA by injecting parasitized murine
erythrocytes (1 × 106) intraperitoneally. Half of the mice received gum arabic (10% in drinking water starting 10
days before the day of infection).

Results: According to the in vitro experiments butyrate significantly blunted parasitaemia only at concentrations
much higher (3 mM) than those encountered in vivo following GA ingestion (<1 μM). According to the in vivo
experiments the administration of gum arabic slightly but significantly decreased the parasitaemia and significantly
extended the life span of infected mice.

Discussion: GA moderately influences the parasitaemia and survival of Plasmodium-infected mice. The underlying
mechanism remained, however, elusive.

Conclusions: Gum arabic favourably influences the course of murine malaria.

Background
Gum Arabic (GA) from gummy exudates of Acacia Sene-
gal [1] is a water-soluble [2] polysaccharide based on
branched chains of (1-3) linked b-D-galactopyranosyl units
containing a-L-arabinofuranosyl, a-L-rhamnopyranosyl,
b-D-glucuronopyranosyl and 4-O-methyl-b-D-glucurono-
pyranosyl units [3]. It is considered one of the safest dietary
fibers [4]. In Middle Eastern countries GA is employed in
the treatment of patients with chronic renal disease and
end stage renal failure [5]. Gum arabic increases the faecal
nitrogen excretion [6] and decreases the production of free
oxygen radicals [5].
Recent in vitro experiments revealed a powerful

immunomodulary effect of GA on dendritic cells [7]
antigen-presenting cells orchestrating the initiation of
both innate and adaptive immunity and thus playing a

pivotal role in the regulation of the immune response
[8-11].
The intestinal fermentation of gum arabic leads to the

formation of several degradation products including short-
chain fatty acids [6]. Accordingly, GA treatment may
enhance the serum butyrate concentrations [12]. Butyrate
compounds have been shown to up-regulate the formation
of foetal haemoglobin [13-15], which may in turn confer
some protection against a severe course of malaria
[16-18]. Specifically, foetal haemoglobin has been shown
to delay the haemoglobin degradation and thus to impede
the intraerythrocyte growth of Plasmodium. Accordingly,
expression of foetal haemoglobin protects against a severe
course of malaria [17,18].
Moreover, foetal haemoglobin may increase the sus-

ceptibility of foetal erythrocytes to oxidative stress [19].
As Plasmodium falciparum imposes oxidative stress on
infected cells, it may trigger eryptosis, the suicidal death
of erythrocytes [20,21]. Eryptosis is characterized by cell
membrane scrambling with phosphatidylserine exposure
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at the cell surface [22-26]. The cell membrane scram-
bling is triggered by increased cytosolic Ca2+ activity
[23-27] and/or ceramide [28]. Ca2+ enters erythrocytes
through Ca2+-permeable cation channels, which are acti-
vated by osmotic shock, oxidative stress or energy deple-
tion [29-33]. In addition, Ca2+ stimulates Ca2+-sensitive
K+ channels [27,34,35], followed by cellular loss of KCl
and osmotically obliged water leading to cell shrinkage
[27]. The Ca2+-permeable cation channels are activated
by oxidative stress [36], which thus stimulates eryptosis
[37]. Excessive cytosolic Ca2+ concentrations stimulate
similarly apoptosis of nucleated cells [38].
Phosphatidylserine-exposing cells are recognized [39,40]

and phagocytosed [41,42] by macrophages. Eryptotic cells
are thus rapidly cleared from circulating blood [43]. The
accelerated clearance of infected erythrocytes [44] may
counteract the development of parasitaemia [45].
Enhanced susceptibility to eryptosis and accelerated clear-
ance of Plasmodium-infected erythrocytes may confer
relative protection against a severe course of malaria in
carriers of sickle-cell trait, beta-thalassaemia-trait, homo-
zygous Hb-C and G6PD-deficiency [46-50], in iron defi-
ciency [21], as well as during treatment with lead [20],
chlorpromazine [51] and cyclosporine [52]. The erythro-
cyte cation channel is inhibited by erythropoietin [53],
which may again influence the course of malaria [54].
The present study explored, whether gum arabic

favourably influences parasitaemia and host survival dur-
ing malaria.

Methods
Animal experiments were performed according to the
German animal protection law and approved by the local
authorities (registration number PY 2/06). Experiments
were performed in healthy SV129/J wild type mice (aged
4 months, both male and female). The animals had free
access to standard chow (ssniff, Soest, Germany) and
drinking water. Murine erythrocytes were drawn from
the animals by incision of the tail vein.
Human erythrocytes were drawn from healthy volun-

teers. The study was approved by the Ethical commis-
sion of the University of Tübingen.
In vitro experiments were performed at 37°C in Ringer

solution containing (in mM) 125 NaCl, 5 KCl, 1 MgSO4,
32 N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid
(HEPES)/NaOH (pH 7.4), 5 glucose, 1 CaCl2 [55]. Buty-
rate was added to the NaCl Ringer at final concentrations
varying from 0.3 to 10 mM (Sigma, Schnelldorf,
Germany). For in vitro treatment, the final haematocrit
was adjusted to 0.3%.
For determination of phosphatidylserine exposure,

FACS analysis was performed as described [29]. After
incubation in the presence or absence of gum arabic,
suspensions of P. falciparum-infected erythrocytes were

stained with annexin V-APC (BD Biosciences Pharmin-
gen, Heidelberg, Germany) and/or with the DNA/RNA
specific dye Syto16 (Molecular Probes, Göttingen, Ger-
many) to identify phosphatidylserine-exposing and
infected erythrocytes, respectively. For annexin V-bind-
ing, erythrocytes were washed, resuspended in annexin
V-binding buffer (Ringer solution containing 5 mM
CaCl2. pH 7.4), stained with annexin V-APC (dilution
1:20), incubated for 20 min at room temperature, and
diluted 1:5 with annexin V-binding buffer. Syto16 (final
concentration of 20 nM) was added directly to the
diluted erythrocyte suspension or co-incubated in the
annexin V-binding buffer. Cells were analyzed by flow
cytometry (FACS-Calibur, Becton Dickinson, Heidelberg,
Germany) in fluorescence channel FL-1 for Syto16
(detected at 530 nm) and in FL-4 for annexin V-APC
fluorescence intensity (detected at 660 nm).
For infection of human erythrocytes the human patho-

gen P. falciparum strain BinH [56] was grown in vitro
[57]. Parasites were cultured as described earlier [58,59]
at a haematocrit of 2% and a parasitaemia of 2-10% in
RPMI 1640 medium supplemented with Albumax II
(0.5%; Gibco, Karlsruhe, Germany) in an atmosphere of
90% N2, 5% CO2, 5% O2 [60,61].
For infection of mice Plasmodium berghei ANKA-

parasitized murine erythrocytes (1 × 106) were injected
intraperitoneally [62,63] into wildtype mice. Where indi-
cated gum arabic (10% in drinking water) was adminis-
tered starting 10 days before the day of infection. Blood
was collected from the mice 8 days after infection by
incision of the tail. Parasitaemia was determined by
Syto-16 staining in FACS analysis.
To estimate the in vitro growth of P. falciparum, the

BinH strain was cultured and synchronized to the ring
stage by sorbitol treatment as described previously [36].
For the in vitro growth assay, synchronized parasitized ery-
throcytes were aliquoted in 96-well plates (200 μl aliquots,
1% haematocrit, 0.5-2% parasitaemia) and grown for 48 h
in the presence or absence of butyrate (0.3 mM - 10 mM).
The parasitaemia was assessed at time 0 and after 48 h of
culture by flow cytometry. Parasitaemia was defined by the
percentage of erythrocytes stained with the DNA/RNA
specific fluorescence dye Syto16.
To estimate DNA/RNA amplification of the intraerythro-

cytic parasite, the culture was ring stage-synchronized, and
re-synchronized after 6 h of culture (to narrow the devel-
opmental parasite stage), aliquoted (200 μl aliquots, 2%
haematocrit and 10% parasitaemia) and cultured for further
16 h in the presence or absence of butyrate (0.3 mM -
10 mM). Thereafter, the DNA/RNA amount of the parasi-
tized erythrocytes was determined by Syto16 fluorescence
as a measure of intraerythrocytic parasite copies.
Data are expressed as arithmetic means ± SEM and

statistical analysis was made by t-test or ANOVA using

Ballal et al. Malaria Journal 2011, 10:139
http://www.malariajournal.com/content/10/1/139

Page 2 of 7



Tukey’s test as post hoc test, as appropriate. p < 0.05
was considered as statistically significant. The mouse
survival was analysed utilizing the Kaplan-Meier estima-
tor method.

Results
According to a blood count, treatment with GA (10% in
drinking water) did not significantly affect blood para-
meters in non-infected mice (Table 1).
As treatment with GA is known to enhance plasma

butyrate concentration, the influence of butyrate on the
in vitro growth of the parasite was analysed. Plasmo-
dium falciparum-infected erythrocytes were cultured in
human erythrocytes and synchronized to ring stage by
sorbitol treatment. Within 48 hours the percentage of
infected erythrocytes increased from 5.09% to 17.82%. In
the presence of butyrate, the increase in the percentage
of parasitized erythrocytes was decreased, an effect
reaching statistical significance at ≥ 3 mM butyrate con-
centration (Figure 1A). In contrast, the presence of
butyrate did not show any significant decrease of the
intraerythrocytic DNA amplification of the parasite
(Figure 1B).
To determine the effect of infection and butyrate on

suicidal erythrocyte death (eryptosis), the percentage of
phosphatidylserine-exposing erythrocytes was estimated
by measurement of annexin V-binding in FACS analysis.
In vitro infection tended to increase the percentage of
annexin V-binding erythrocytes (Figure 1C). The addi-
tion of butyrate tended to decrease the percentage of
annexin V-binding cells, an effect, however, not reaching
statistical significance (Figure 1C).
To determine the in vivo efficacy of gum arabic, mice

were infected with P. berghei with or without GA
treatment. Gum arabic (10% in drinking water) was
administered starting 10 days before the day of infec-
tion (Figure 2A). The percentage of infected erythro-
cytes gradually increased with or without gum arabic
treatment. However, it was slightly lower in gum ara-
bic-treated animals than in animals without gum arabic

treatment, an effect reaching statistical significance
throughout 10-21 days of infection (Figure 2B).
Infection with P. berghei significantly decreased the

erythrocyte number per μl, haematocrit (packed cell
volume) and blood haemoglobin concentration (Table
1), effects all significantly blunted by treatment with GA
(Table 1).
The infection was paralleled by triggering of cell

membrane scrambling, as evidenced from annexin V
binding (Figure 3). Irrespective of GA treatment, the
percentage of annexin V binding cells was significantly
higher in infected than in non-infected erythrocytes.
The percentage of infected erythrocytes binding
annexin V was higher in the GA-treated animals, an
effect reaching statistical significance at day 19 of post-
infection.
The treatment with GA further influenced the survival

of P. berghei-infected mice. As shown in Figure 4, all
untreated animals died within 26 days after the infec-
tion. In contrast, as many as 70% of the GA-treated ani-
mals survived the infection for more than 26 days.

Discussion
The present study reveals a completely novel effect of
gum arabic, i.e. an influence on the course of malaria.
Treatment with GA delayed a lethal course of malaria
following infection of mice with P. berghei. As shown
earlier, the infection of mice with P. berghei is followed
by an invariably lethal course of malaria [62]. Treatment
with GA did not prevent a lethal course of malaria but
extended the survival of the infected animals. Accord-
ingly, when all untreated animals had died, still more
than half of the GA treated animals were alive.
The present observations do not allow safe conclu-

sions as to the mechanisms underlying the moderate
beneficial effect of GA treatment. Gum arabic treatment
delayed the development of parasitaemia and blunted
the decrease of blood erythrocyte number and haemo-
globin concentration and thus significantly counteracted
the development of anemia.

Table 1 Arithmetic means (± SEM, n = 7) of erythrocyte parameters of noninfected and infected mice without or with
gum arabic treatment (10% in drinking water)

Noninfected Infected

- GA + GA - GA + GA

Erythrocyte number (106/mm3) 10.78 ± 0.19 11.03 ± 0.10 6.79 ± 1.01#, * 8.32 ± 0.95#, *

Haemoglobin (g/dl) 15.57 ± 0.32 16.35 ± 0.16 9.47 ± 1.38#, * 11.77 ± 1.39#, *

Haematocrit (%) 43.34 ± 0.32 44.5 ± 0.39 28.27 ± 4.3#, * 34.31 ± 3.72#, *

Mean erythrocyte volume (MCV) (fl) 40.2 ± 0.38 40.47 ± 0.16 41.35 ± 0.63 41.37 ± 0.39

Erythrocyte haemoglobin concentration (MCHC) (g/dl) 35.91 ± 0.20 36.75 ± 0.13 33.88 ± 0.55# 34.04 ± 0.49#

§Haemoglobin/erythrocyte (pg) 14.4 ± 0.20 14.88 ± 0.07 14.01 ± 0.13 14.07 ± 0.10
§ calculated from MCV and MCHC

* different from -GA
# different from noninfected
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In theory, GA could affect parasitaemia and host sur-
vival by increasing the erythrocyte content of foetal hae-
moglobin, which is known to delay the intraerythrocytic
growth of the parasite [17,18]. The effect would be
apparent particularly following pretreatment of the mice
with GA. While butyrate requires excessive concentra-
tions to be effective in vitro, much lower concentrations
could modify the formation of foetal hamoglobin
[13-15] and thus susceptibility to malaria [16-18].
Foetal hemoglobin (HbF) has a higher O2 affinity than

adult haemoglobin [64] and influences erythrocyte K+

transport and O2 dependence of erythrocyte glycolysis
[65]. Increased HbO2 affinity may result in enhanced

lactate formation with subsequent decrease of HCO3
-

and thus increased CO2/HCO3
- ratio. CO2 fosters SOD1

peroxidation, promoting the release of pro-inflammatory
cytokines from activated macrophages leading to meta-
bolic syndrome [66]. Those events may affect erythro-
cyte survival in parasitized erythrocytes.
Gum arabic, butyrate and/or foetal haemoglobin may

affect parasitaemia and host survival by accelerating the
suicidal death of infected erythrocytes [67]. Phosphatidyl-
serine-exposing erythrocytes are phagocytosed [41,42]
and thus rapidly cleared from circulating blood [43].
Eryptosis is triggered by a wide variety of substances
[68-74]. Several of those substances have been shown to
decrease parasitaemia and to extend the survival of
infected mice [52,75-78]. Moreover, eryptosis is enhanced
in several clinical conditions, such as iron deficiency [43],
sickle-cell anaemia [79,80], beta-thalassaemia [22], glu-
cose-6-phosphate dehydrogenase (G6PD)-deficiency [22],
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phosphate depletion [81], Haemolytic uremic syndrome
[82], sepsis [83], malaria [45] and Wilson’s disease [84].
Some of those diseases have similarly been shown to
favourably influence the course of malaria, i.e. sickle-cell
trait, beta-thalassaemia-trait, homozygous Hb-C and
G6PD-deficiency [22,46-50] as well as iron deficiency
[21]. However, most of those diseases and substances
exert a profound effect on parasitaemia.
In conclusion, in mice, gum arabic provides extended

survival following the invariably lethal infection with P.
berghei. Gum arabic is particularly effective in prevent-
ing an early death from this devastating disease.
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