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Abstract

circumsporozoite protein (PbCSP) peptides.

cell epitopes of PbCSP were tested in BALB/c mice.

immunized mice.

platform in malaria vaccine development.

Background: Virus-like particles have been regularly used as an antigen delivery system for a number of
Plasmodium peptides or proteins. The present study reports the immunogenicity and protective efficacy of
bacterium-like particles (BLPs) generated from Lactococcus lactis and loaded with Plasmodium berghei

Methods: A panel of BLP-PbCSP formulations differing in composition and quantity of B-cell, CD4+ and CD8+ T-

Results: BLP-PbCSP1 induced specific humoral responses but no IFN-y ELISPOT response, protecting 30-40% of the
immunized mice. BLP-PbCSP2, with reduced length of the non-immunogenic part of the T-cell-epitopes construct,
increased induction of IFN-y responses as well as protection up to 60-70%. Compared to controls, lower
parasitaemia was observed in unprotected mice immunized with BLP-PbCSP1 or 2, suggestive for partial immunity.
Finally, further increase of the number of B-cell epitopes and codon optimization (BLP-PbCSP4) induced the
highest anti-CSP antibody levels and number of IFN-y spots, resulting in sterile immunity in 100% of the

Conclusion: Presentation of Plasmodium-derived antigens using BLPs as a delivery system induced complete
protection in a murine malaria model. Eventually, BLPs have the potential to be used as a novel versatile delivery

Keywords: BLP, CSP, Delivery platform, Immunization, Malaria, Plasmodium berghei

Background

By 2009, nearly a quarter of a billion people worldwide
suffered from a malaria infection that resulted in
approximately 800,000 deaths each year, mainly of chil-
dren in sub-Saharan Africa [1]. Long-term solutions to
stop deaths caused by malaria include the development
of a prophylactic vaccine. Pre-erythrocytic stages of the
parasite have been the principle target for vaccine devel-
opment [2]. Effective delivery systems are required to
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optimize immune responses and protection by sub-unit
based vaccines [3]. As such, virus-like particles (VLPs)
have emerged as promising candidates able to induce
cell-mediated immunity [4]. Due to its abundant pre-
sence on the sporozoite’s surface [5], the circumsporo-
zoite protein (CSP) has been the prime target for pre-
erythrocytic protein-based malaria vaccine development
[6-9]. In the Plasmodium berghei murine model, CSP
immunizations with virally vectored delivery systems
have been to shown to induce potent CD8+ T-cell
responses [10-13]. However, strong CD8+ T-cell
responses associated with high protection levels is only
achieved by using different viral vectors in a prime-
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boost strategy. Pre-existing immunity, by natural expo-
sure or VLP prime immunization, might reduce the effi-
cacy of a subsequent boost immunization with the same
VLP [4]. Moreover, concerns for safety were recently
raised from a clinical trial of an Ad5-vectored HIV vac-
cine, in which excess HIV infections were observed in
vera with pre-existing Ad5 antibodies [14]. Both the
necessity of prime-boost immunizat!ion withdifferent
carriers and the uncertainties about safety profiles could
represent hurdles for development of a malaria VLP
vaccine; emphasizing the need for alternative delivery
platforms.

Previous studies have described a multifunctional car-
rier system based on Lactococcus lactis [15,16], for
which prime immunization has been shown not to
reduce the efficacy of booster immunizations [17]. By
simple hot acid pre-treatment, these bacteria are con-
verted in a non-living particle delivery system with self-
adjuvanting properties, called bacterium-like particles
(BLPs). BLPs can be simply mixed with antigens to sti-
mulate immune responses. The best stimulation is
obtained when the antigen is attached to the particle
[17]. Strong, but non-covalent attachment of antigens to
the surface of BLPs is mediated by using a lactococcal
peptidoglycan binding domain called Protan [18].
Hybrid antigen-Protan fusion proteins can be secreted
by a recombinant production system. When the cell-free
culture medium is mixed with BLPs, Protan-fusion pro-
teins bind with high affinity. Applications of BLP-based
delivery have been successful for influenza [19,20], Yersi-
nia pestis [21] and Streptococcus pneumoniae [22]. In a
previous study, the ability of Lactococcus lactis BLPs to
elicit systemic antibodies against the Plasmodium falci-
parum merozoite surface antigen 2 was evaluated [23].
In the present study, immune responses and protective
efficacy were studied in a murine model following par-
enteral immunizations with BLPs carrying Plasmodium
berghei circumsporozoite protein (PbCSP) peptides.

Methods

Bacterial strains and growth conditions

Strains and plasmids used in this study are listed in
Table 1. Lactococcus lactis strains were grown at 30°C
in M17 broth (Oxoid) containing 0.5% glucose (w/v)
(GM17) and, when necessary, supplemented with chlor-
amphenicol (5 pg/ml) for plasmid selection. P;s5-driven
gene expression was induced with the culture superna-
tant of the nisin-producing L. lactis strain NZ9700 as
described previously [24]. Escherichia coli strains were
grown in Luria-Bertani (LB) liquid medium or on agar
plates at 37°C both supplemented with 100 pg/ml ampi-
cillin. Enzymes and buffers were purchased from New
England Biolabs (USA) or Roche (The Netherlands).
Electro-transformation of L. lactis was carried out as
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described by Holo and Nes [25] using a Bio-Rad Gene
Pulser.

Plasmid construction and production of antigens

PbCSP strain ANKA genomic DNA was isolated as total
DNA from infected red blood cells using Genomic
Prep™ (Amersham) as described by the manufacturer’s
instructions. Primers PbCSP.1 (AACGTCTCAC ATG-
CAAAATA AAATCATCCA AGCCCAAAGG AAC) and
PbCSP.2 (CGTCTCAAGC TATTAAAGCT TAA-
GAATTCC GCTTACAATA TTAAATATAC TTGAAC)
were used to amplify the PbCSP gene fragment lacking
the parts encoding the signal sequence and GPI anchor.
The PCR fragment was cloned into vector pCR4Topo-
Blunt (Invitrogen, Breda, The Netherlands), resulting in
plasmid pCR4-PbCSP. The PbCSP specific parts in this
plasmid were sequenced (Figure 1). Plasmid pCR4-
PbCSP was used as a template for subsequent cloning in
the Protan - and His-tag fusion plasmids. All cloning
steps that involved PCR were checked by nucleotide
sequence analyses (BaseClear, Leiden, The Netherlands).

Plasmid pPA77 (CSP[Tlong]-Protan) encodes the C-
terminal part of PbCSP without GPI anchor, but
includes CD4" and CD8" epitopes, coupled to Protan
(Figure 2A). The DNA encoding the CSP-Tlong domain
was constructed by ligating a Ncol- and EcoRI-cleaved
PCR-amplified fragment of P. berghei CSP1 into the cor-
responding sites of plasmid pPA3. The CSP-specific
fragment was amplified with the primers CSP-ctl.fwl
(CAAACTCCAT GGGAAATGAC GATTCTTATA
TCCC) and CSP-ctl.revl (CCTGAGCATG CTCGAAT
TCG GCTTACAATA TTAAATATAC TTGAAC) with
plasmid pCR4-PbCSP as template. The resulting plasmid
pPA77 was used for electroporation of L. lactis PA1001.

Plasmid pPA91 (CSP[Tlong]-His) encodes the same
PbCSP fragment as in plasmid pPA77, coupled to a His-
tag and a thioredoxin domain (Figure 2A). The DNA
encoding the CSP domain was cut from plasmid pPA77
with Ncol and EcoRI and ligated in the corresponding
sites of plasmid pET32C. For intracellular production of
protein via IPTG induction, plasmid pPA91 was trans-
ferred to E. coli strain BL21(DE3).

Plasmid pPA171 (CSP[2xB]-Protan) specifies a fusion
between selected B-cell epitopes (32 amino acids) of the
P. berghei CSP protein ([PPPPNPND],,-[NANDPAPP]
2x) and Protan (Figure 2A). The DNA encoding the B-
cell domain was produced by annealing four primers
based on L. lactis codon usage. A PCR without template
was performed with primers 273 (CGGTCTCACA
TGGATATCGG AATTCCTCCA CCTCCAAATC CT
AATGATCC ACCTC), 274 (GATCATTAGC ATTAT
CATTA GGATTAGGTG GAGGTGGATC ATTAG
GATTT), 275 (TAATGATAAT GCTAATGATC
CAGCTCCACC TAACGCAAAT GACCCTGCTC) and
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Table 1 Bacterial strains and plasmids used in this study
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Strain or Plasmid Relevant phenotype(s) or genotype(s)® Source/
reference
PCR4-PbCSP Ap" Km', derivative of pCR4Blunt-TOPO (Invitrogen) containing the Plasmodium berghei CSP gene (Figure 1)  This study
pPA3 Cm', pNZ8048 derivative containing c-myc, the acmA Protan (nucleotides 835 to 1492) under control of [15]
PnisA, and usp45,; (PA3)
pPA77 pPA3 derivative producing CSP[Tlong]-Protan This study
pPA91 Ap', pET32C (Novagen) derivative producing CSP[Tlong]-His This study
pPA171 pPA3 derivative producing CSP[2xB]-Protan This study
pPA177 pPA3 derivative producing CSP[Tshort]-Protan This study
pPA180 Mucosis laboratory collection, used for subcloning This study
pPA182 Mucosis laboratory collection, used for subcloning This study
pPA193 Ap', pET32C (Novagen) derivative producing CSP[2xB]-His This study
pPA197 pPA177 derivative producing CSP[2xB-Tshort]-Protan This study
pPA198 pPA177 derivative producing CSP[4xB-Tshort]-Protan This study
Lactococcus lactis Derivative of NZ9000 lacking acmA and htrA, allows nisin-inducible expression [15]
PA1001
Escherichia coli BL21  Allows IPTG-inducible expression Novagen
(DE3)

a) Ppisa, nisin-inducible promoter; usp45.,, signal sequence of usp45

276 (CGGTCTCTAA TTCCTGGAGG AGCAGGGTCA
TTTGCGTTA). A second PCR with only the flanking pri-
mers 273 and 276 was performed on the product of the
first PCR. The resulting 134 bp product was ligated in the
pCR™4Blunt-TOPO vector and sequenced. An Eco31I
cleaved insert from this plasmid, possessing Ncol and
EcoRI overlapping ends, was then transferred into the cor-
responding sites of vector pPA3. The resulting plasmid
pPA171 was used for electroporation of L. lactis PA1001.

Plasmid pPA177 (CSP[Tshort]-Protan) specifies a
fusion between the CD8" and CD4" T-cell epitopes of
the P. berghei CSP protein and Protan. Compared to the
CSP[Tlong]-Protan construct, the CSP[Tshort]-Protan
construct lacks the amino acids C-terminal of the pre-
dicted CD4" T-cell epitope (Figure 2A). The DNA
encoding the CSP[Tshort] domain was constructed by a
PCR without template with four partly overlapping pri-
mers 240 (CGGTCTCACA TGGATATCGG AATT-
CAAAAT GATGATTC), 241 (GGAATTCAAA
ATGATGATTC ATATATTCCA TCTGCTGAAA
AAATTTTAGA ATTTG), 242 (CCATTCTTCT
GTAATACTAT CACGAATTTG TTTAACAAAT
TCTAAAATTT TTTCAG) and 243 (CGGTCTCTAA
TTTGTGACCA TTCTTCTGTA ATACTATCAC),
representing the desired CSP[Tshort] sequence with L.
lactis optimized codon usage. The product was cloned
in the pCR®4Blunt-TOPO vector. An Eco31I-cleaved
fragment of the resulting vector containing the insert,
resulting in Ncol and EcoRI overhanging ends, was
ligated into the corresponding sites of plasmid pPA3,
thereby replacing the myc-epitope present in pPA3. The
resulting plasmid pPA171 was used for electroporation
of L. lactis PA1001.

Plasmid pPA193 (CSP[2xB]-His) specifies a fusion
between selected B-cell epitopes as in plasmid pPA171,
coupled to a His-tag and a thioredoxin domain. The Eco31I-
cleaved fragment that was used in the construction of
pPA177 was ligated in plasmid pPA180, resulting in plasmid
pPA182, now containing DNA encoding the B-cell epitope
with a C-terminal His-tag. A Ncol and Hind 111 cleaved frag-
ment of pPA182 was ligated in the corresponding sites of
plasmid pET32C, resulting in plasmid pPA193. For intracel-
lular production of protein via IPTG induction, plasmid
pPA193 was transferred to E. coli strain BL21(DE3).

Plasmid pPA197 (CSP[2xB-Tshort]-Protan) specifies a
fusion between selected B-cell epitopes as in plasmid
pPA171, the CSP Tshort epitope (CTL and Th) and
Protan, and was constructed by ligating an EcoRI-
cleaved fragment of pPA171, containing the B-cell epi-
tope, into the EcoRI site of pPA177 in front of the
Tshort - Protan fusion. The ligation mix was used for
electroporation of L. lactis PA1001.

Plasmid pPA198 (CSP[4xB-Tshort]-Protan) specifies a
fusion between two selected B-cell epitopes as in plasmid
pPA171, the CSP Tshort epitope (CTL and Th) and Pro-
tan, and was constructed by ligating two sequential EcoRI-
cleaved fragments of pPA171, containing the 2xB cell epi-
tope, into the EcoRI sites of pPA177. The resulting plasmid
pPA198 was used for electroporation of L. lactis PA1001.

Preparation of BLP-PbCSP formulations

CSP[2xB]-His and CSP[Tlong]-His were produced by
E. coli using IPTG induction and purified by His-tag iso-
lation for coating of ELISA plates. Purified CSP[Tlong]-
His was also used for immunizations after addition of
incomplete Freund’s adjuvant (IF A).



Nganou-Makamdop et al. Malaria Journal 2012, 11:50
http://www.malariajournal.com/content/11/1/50

Page 4 of 11

10

58]
(V]
[e]

40

el

AAAM29577.1
GQ862302.1
PCR4-PbCSP

L LT A

AAA29577.1
GQ862302.1
PCR4-PbCSP

AAA29577.1
G0862302.1
pCR4-PbCSP

AAA29577.1
GQ862302.1
pPCR4-PbCSP

AAA29577.1
GQ862302.1
PCR4-PbCSP

320

AAA29577.1
GQ862302.1
PCR4-PbCSP

VNSLLPGYGONKIIQAQRNLNELCYNEGNDNKLYHVLNSKNGK
LLLVNS LLPGYGQN'KE IQAQRNLNELCYNEGNDNKLYHVLNSKNGKI

DLTLEDIDTEICKMDKCSSIFNIVSNSLGE plalabtateblbty
DLTLEDIDTEICKMDKCSSIFNIV.
Figure 1 Alignment of the partial protein sequence encoded by the DNA of the Plasmodium berghei strain ANKA CSP gene as cloned

in plasmid pCR4-PbCSP (this study) with two sequences of the CSP genes from P. berghei (Genbank: AAA29577.1, [46]) and P. berghei
strain ANKA (Genbank: GQ862302.1, [47]). Identical residues are shaded black.

The plasmids pPA171, pPA77 and pPA177 were used
to express and secrete the recombinant fusion proteins
CSP[2XB]-Protan, CSP[Tlong]-Protan and CSP[Tshort]-
Protan, respectively (see Figure 2A). BLP-PbCSP were
prepared as described elsewhere [16]. Briefly, BLPs were
obtained by boiling freshly grown L. lactis NZ9000 in 0.6
M trichloroacetic acid (pH = 1) for 30 min, followed by
extensive washing with phosphate buffered saline (PBS).
Production of the antigen-Protan fusions was induced by
addition of nisin to cultures of the appropriate plasmid
carrying L. lactis PA1001 strains. Culture supernatants
containing the Protan-fusion proteins were 10 times con-
centrated by ultrafiltration using a VivaFlow system
(VivaFlow200, 10,000 Da cut-off, Vivascience, Hannover,

Germany). Binding of antigens was achieved by mixing
the concentrates with BLPs under gentle agitation for 30
min at room temperature, followed by extensive washing
with PBS.

BLP-PbCSP1 was produced as follows: concentrated
supernatant of a CSP[Tlong]-Protan producing L. lactis
culture was bound to BLPs on a blood suspension mixer
for 30 min at room temperature. After washing with
PBS, CSP[2xB]-Protan was bound to the BLP-CSP
[Tlong]-Protan using the same method. Next, the pellet
was washed and re-suspended in PBS, resulting in a
BLP-PbCSP containing both antigens on a single parti-
cle. BLP-PbCSP1 contained approximately 5 pg of CSP
[Tlong]-Protan and 20 pg CSP[2xB]-Protan per dose.
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Figure 2 Schematic representation of BLP-PbCSP constructs and experimental set-up. (A) Schematic representation of the mature native
PbCSP (without GPI anchor) with the B-cell epitopes, the CD8" and CD4" T-cell sequences. Formulations used in this study including a CSP-Tlong-
His and various BLP-CSP are schematically represented. (B) In several experiments, mice (n = 15/group) were immunized by subcutaneous
administration of a prime and two boost injections. Blood samples were collected at day 9, 30 and 51 for serology. Two or three weeks after the
second boost, mice were either sacrificed (n = 5/group) or challenged (n = 10/group). Protection was assessed by Giemsa-staining of bloodsmears

from day 4 to 14 after challenge.

The same approach was used for BLP-PbCSP2, which
was produced by first binding the CSP[Tshort]-Protan
to the BLP followed by washing and binding of the CSP
[2xB]-Protan antigen. BLP-PbCSP2 contained 20 pg of
CSP [Tshort]-Protan and 20 pg CSP[2xB]-Protan per
dose. BLP-PbCSP3 and BLP-PbCSP4 contained approxi-
mately 45 pg of CSP[2xB-Tshort]-Protan per dose. The
amount of bound antigen-Protan was estimated using
Coomassie brilliant blue stained gels and compared to

BSA protein standards. BLP-PbCSP inocula each con-
tained 2.5 x 10° BLPs in 100 ul PBS. To formulate the
control for BLP-PbCSP1, 10 ug CSP[Tlong]-His was
emulsified in IFA (Difco Laboratories, Michigan, U.S.A)
in final volume of 100 pl.

Immunization, sample collection and challenge
All animal experiments were performed with approval of
the Animal Experimentation Committee of the
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University of Nijmegen, The Netherlands (DEC2002-89
and DEC2005-70). Female BALB/c mice (six week old)
were purchased from Charles River (Germany) and
received water and food ad libitum. Mice (n = 15) were
immunized subcutaneously by injection of 100 ul of
CSP formulation or PBS, divided into both flanks. Com-
plete immunization consisted of a prime and two boosts
injections given at three-week intervals. Two weeks after
the last administration, blood samples were collected
from the retro-orbital plexus and supplemented with
heparin. After centrifugation, plasma was stored at -20°
C until use. Immunized mice were either challenged by
bites of infected mosquitoes (n = 10) or sacrificed for
IFN-y ELISPOT assay (n = 5) as described below. Chal-
lenge of immunized and naive mice was performed by
bites of five to eight infected P. berghei mosquitoes two
to three weeks after the second boost injection. Parasi-
taemia was determined every other day from day 4 to
day 14 by Giemsa-staining of blood smears. Mice that
developed parasitaemia were sacrificed on day 12 for
ethical reasons. Mice with negative blood smears on day
14 after challenge were considered fully protected. An
overview of the experiment is presented in Figure 2B.

Measurement of IFN-y production

Two weeks after the last immunization, spleens of non-
challenged mice were collected in culture medium
(DMEM high glucose, containing Glutamax and supple-
mented with 10% FCS and Penicillin/Streptavidin). Spleen
cell suspensions were prepared by mechanical dispersion
and processed through a 70 pm Nylon cell strainer (BD
Falcon). Red blood cells were lysed by incubation with
ACK buffer (NH4CI 0.83%, KHCO3; 1 mM, EDTA 0.1 mM,
pH = 7.4) for 5 min. [FN-y production was measured using
the mouse IFN-y ELISPOT kit from BD Biosciences
(Erembodegem, Belgium), according to the manufacturer’s
instruction. Splenocytes were plated at a density of 4 x 10
or 10° cells per well and stimulated with the CSP peptide
sequence of the CD4+ eptitope KQIRDSITEEWS or the
CD8" epitope SYIPSAEKI (synthesized by Sigma Genosys).
Stimulation with 4 pg/ml PHA (Sigma-Aldrich) served as
positive control for the assay. The CSP-Tlong-His formula-
tion (Figure 2A), containing CD4+ and CD8+ T-cell epi-
topes previously shown to induce IFN-y responses [26-28],
served as a positive control. Plates were incubated for 16
hr at 37°C - 5% CO, prior to IFN-y staining. Spots were
counted using the A. EL. VIS (Automated ELISA Spot
Assay Video Analysis Systems), Eli. Scan and Eli. Analyse
software (Sanquin, Amsterdam, the Netherlands). In all
experiments, polyclonal stimulation with PHA showed in
all immunized and naive mice equally high IFN-y response
compared to unstimulated conditions (p < 0.05).
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Measurement of anti-CSP antibodies

Specific anti-CSP IgG concentrations were determined by
enzyme-linked immuno sorbent assay (ELISA). Briefly,
high-binding capacity microtitre plates (Greiner, Alphen
aan de Rijn, the Netherlands) were coated with CSP
[2xB]-His - (0.2 pg/well) in 0.05 M carbonate buffer (pH
= 9.6) overnight at 4°C. The plates were washed with PBS
- 0.02% Tween 20 (pH = 7.4), then incubated for 1 hr
with 1% BSA in PBS/Tween. Diluted sera were added to
the plates in three-fold dilutions and incubated for 2 hr
at room temperature. After washing, the alkaline phos-
phatase secondary antibody directed to mouse IgG-Fc
(Sigma-Aldrich, Zwijndrecht, The Netherlands) was incu-
bated for 1.5 hr at a dilution 1:5,000. Colorimetric reac-
tion was obtained by addition of p-nitrophenyl phosphate
substrate (Sigma-Aldrich) diluted in 0.05 M carbonate
buffer (pH = 9.6) supplemented with 1 uM MgCl,. The
enzymatic reaction was stopped with NaOH and read at
405 nm. The CSP specific IgG concentrations were calcu-
lated by comparisons with a calibration curve obtained
with purified mouse IgG (Sigma-Aldrich).

Statistical analysis

Comparisons between groups were performed by one-
way ANOVA (Kruskas-Wallis test) or by a Mann-Whit-
ney U test using PRISM software version 5.0 (Graphpad,
San Diego, CA). p < 0.05 was considered statistically
significant.

Results

BLP-PbCSP1 induces parasite-specific antibodies but no
IFN-y response

BLP-PbCSP1 was produced by expression of both CSP
B- and T-cell epitopes in two different Protan fusion
products (Figure 2A). Following subcutaneous immuni-
zation, B-cell-epitope specific IgG levels were deter-
mined by ELISA nine days after prime (day 9) and each
boost injection (day 30 and 51). The prime injection
induced low levels of B-cell-epitope specific IgG levels
that significantly increased after the first boost injection
(p = 0.008) and remained at similar levels upon the sec-
ond boost (Figure 3A). Prior to challenge, IFN-y
response was assessed by ELISPOT in five of the 15
BLP-PbCSP1 immunized mice. However, no IFN-y
response could be observed after stimulation with CSP
epitopes (Figure 3B).

Partial protection by BLP-PbCSP1

Next, protection in 10 BLP-PbCSP1 immunized mice
was assessed by performing a mosquito challenge three
weeks after the second boost. At day 14 post-challenge,
BLP-PbCSP1 showed complete protection in 40% (4/10)
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of the mice (Table 2) and the development of blood-
stage parasites in immunized unprotected mice did not
differ from naive mice (Figure 3C). However, the pre-
patent period of unprotected mice was significantly
extended for two days compared to naive mice sugges-
tive for partial immunity (Figure 3D).

Table 2 Protection by BLP-PbCSP1, 2 and 4 upon
Plasmodium berghei sporozoite challenge

No. protected/No. challenged % protection

Exp 1 BLP-PbCSP1  4/10 40%
Naive 0/10 0%
BLP-PbCSP1  3/10 30%

Exp 2 BLP-PbCSP2  7/10 70%
Naive 0/10 0%
BLP-PbCSP2  6/10 60%

Exp 3 BLP-PbCSP4  9/9 100%
Naive 1/10 10%

Improved immune responses and protection by
optimized BLP-PbCSP2

To further improve BLP-PbCSP, codons were optimized
for higher production in L. lactis and the length of the
non-immunogenic sequence of the T-cell epitope was
shortened. Optimization resulted in a new fusion pro-
tein BLP-PbCSP2 with CSP[Tshort]-Protan bound to
BLP in equal amounts as the CSP[2xB]-Protan (Figure
2A). Following a prime and two boost injections (Figure
2B), BLP-PbCSP2 immunized mice developed slightly
higher concentrations (p = 0.05) of B-cell epitope speci-
fic IgG levels compared to BLP-PbCSP1 (Figure 4A).
Unlike BLP-PbCSP1 however, ELISPOT IFN-y levels
were high in response to both CTL and Th peptides
(Figure 4B). Thus optimization of the BLP-PbCSP1
resulted in BLP-PbCSP2 with slightly higher humoral
and enhanced cellular responses. Challenge of BLP-
PbCSP1 and BLP-PbCSP2 immunized mice was per-
formed two weeks after the second boost. Complete
protection was observed by day 14 post-challenge in
30% (3/10) of BLP-PbCSP1 and in 70% (7/10) of BLP-
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PbCSP2 immunized mice (Table 2). Parasitaemia of the Days post P.b. challenge
BLP-PbCSP2 immunized mice was significantly lower Figure 5 Immune responses and protection BLP-PbCSP4. BLP-
on day 12 in unprotected immunized mice (p = 0.02) PbCSP4 induced (A) IgG levels against B-cell epitopes ([PPPPNPND]
Compared to naive mice (Figure 4c)' 2-[INANDPAPP],,) and (B) IFN-y response against CTL (SYIPSAEKI)
and Th (KQIRDSITEEWS) P. berghei CSP epitopes compared to BLP-
S . d o ion by BLP PbCSP2. (C) Post-challenge parasitaemia of unprotected BLP-PbCSP4
tronger immune response and 100% protection by - and two immunized mice. Medians are presented on all plots with
PbCSP4 individual values. Error bars represent SEM. * = p < 0.05, *** = p <
Finally, to further improveme humoral responses 0.001.

induced by BLP-PbCSP, B-cell and T-cell epitopes were
fused to formulate BLP-PbCSP3 and B-cell epitopes
were duplicated in BLP-PbCSP4 (Figure 2A). Anti-B-cell
epitope IgG responses generated by BLP-PbCSP4 were
marginally higher compared to BLP-PbCSP3 (145 pg/ml
and 104 pg/ml respectively, data not shown). Immuniza-
tion with BLP-PbCSP4 induced significantly higher IgG
antibody levels against B-cell epitopes as compared to
BLP-PbCSP2 immunized and naive mice (p < 0.0001),
(Figure 5A). Furthermore, significantly higher CTL- and

Th-specific IFN-y responses were observed by spleno-
cytes from BLP-PbCSP4 (p = 0.03) compared to BLP-
PbCSP2 immunized mice (Figure 5B). Following chal-
lenge (two weeks after the second boost), complete pro-
tection was observed in 60% (6/10) of BLP-PbCSP2 and
in 100% (9/9) of BLP-PbCSP4 immunized mice (Table
2). In line with the previous experiment, unprotected
mice immunized with BLP-PbCSP2 showed a significant
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lower parasitaemia (p = 0.03) at day 12. All mice immu-
nized with BLP-PbCSP4 developed sterile immunity
(Figure 5C). Thus, optimization of the BLP-PbCSP for-
mulations resulted in high T- and B-cell responses that
provided complete protection in all P. berghei immu-
nized mice.

Discussion

The present study reports 100% protection against P.
berghei malaria induced by subunits of PbCSP using
bacterium-like particles (BLPs) as self-adjuvanting deliv-
ery system. Following subcutaneous immunization, BLP-
PbCSP formulations are able to trigger both specific IgG
antibodies and IFN-y response to CD4+ and CD8+ T-
cell epitopes. Both humoral and cellular responses have
been shown to be relevant for protection against malaria
parasites in different murine models [29-32]. Identifica-
tion and use of specific T- and B-cell epitopes has been
valuable for understanding the protective immune
response induced by CSP-based constructs [28,32-34].
Immunization with virally vectored P. berghei CSP
shows low immune responses and protection levels fol-
lowing prime-boost regimen with a single carrier
[10-13]. However, immune responses and protection
rates are high when different viral vectors for P. berghei
or Plasmodium yoelii CSP are used [10-13,35]. See-
mingly, the benefits of VLP-based carrier combinations
for induction of high protective efficacy apply to several
Plasmodium species. Similarly, prime-boost P. berghei
CSP immunizations with Salmonella or Bordetella-based
carriers show lower protective efficacy compared to the
combination of both carriers [36]. The current data
show that homologous prime-boosting with L. lactis
BLP-PbCSP is sufficient to induce sterile protection,
illustrating the potency of this platform for effec!tive
delivery of malaria epitopes.

The several epitope modifications explored to improve
immune responses of BLP-PbCSP constructs included
codon optimization, reduction of the non-immunogenic
part in the T-cell epitopes as well as fusion of B- and T-
cell epitopes. As previously shown, codon optimization
can improve adequate production of malaria antigens
[37]. The improved cellular responses reported here
cannot be clearly explained by either codon optimization
or modification of T-cell epitopes. As for humoral
responses, CD4+ helper T cells contribute to B-cell
responses and even more so are prerequisite to IgG pro-
duction. Tam et al. reported highest antibodies titres
and highest protection levels by tandemly connected T-
and B-cell epitopes of PbCSP [38]. Accordingly,
improved T helper responses may indirectly account for
the somewhat increased IgG responses to BLP-PbCSP2.
As presented in Figure 3, immunization with BLP-
PbCSP1 induces high levels of B-cell epitope specific
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IgG but no CTL/Th specific IFN-y response, resulting in
low protection level and significant delayed parasitemia.
While immunization with BLP-PbCSP2 merely induces
slightly higher levels of B-cell epitope specific IgG, the
significantly higher CTL/Th specific IFN-y response
associates with higher protection level and further
delayed parasitaemia. Eventually, BLP-PbCSP4 induces
the highest levels of humoral and cellular responses but
also complete protection. Clearly, induction of specific
antibodies is sufficient to induce a minimal protective
efficacy. For complete protection however, both potent
humoral and cellular responses are apparently required.
Whether contribution, if any, of the Th response to
humoral response leads to qualitatively superior specific
IgG antibodies is an interesting consideration to explore
in future studies.

Moreover, CSP contains several epitopes that have
been shown to induce B-cell [32,39,40] as well as CD4+
and CD8+ T-cell [30,41,42] protective immune
responses. The present study clearly further illustrates
that modifications in both T- and B-cell CSP epitopes
can have major effects on immune responses and pro-
tective efficacy as shown before [38]. In addition, there
is increasing evidence of the protective role of non-CSP
pre-erythrocytic malaria antigens [43-45]. Immunization
studies with some recently identified candidates could
be performed using the L. lactis BLP-carrier whose
immuno-modulating properties that induce local and
systemic immune responses [17,19,21], are an asset for
efficient protection studies with potentially multiple
antigen peptides. Recent launch of a phase I clinical
study with FlIuGEM™, an influenza vaccine with L. lac-
tis BLP as delivery platform, paved the way towards vac-
cines delivery by this non-living and non-genetically
modified carrier. Eventually, BLPs derived from the
food-grade bacterium L. lactis could also be evaluated as
a delivery system for a malaria vaccine.

In conclusion, immunizations with BLP-PbCSP formu-
lation containing B- and T-cell epitopes induce strong
humoral and cellular responses that result in complete
protection in mice. L. lactis BLPs are potentially a deliv-
ery system for the development of a safe and affordable
malaria vaccine with high protective efficacy.

Abbreviations
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