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Abstract

Background: Plasmodium vivax is a major cause of malaria and is still primarily treated with chloroquine.
Chloroquine inhibits the polymerization of haem to inert haemozoin. Free haem monomers are thought
to catalyze oxidative damage to the Plasmodium spp. trophozoite, the stage when haemoglobin catabolism
is maximal. However preliminary in vitro observations on P. vivax clinical isolates suggest that only ring
stages (early trophozoites) are sensitive to chloroquine. In this study, the stage specific action of
chloroquine was investigated in synchronous cryopreserved isolates of P. vivax.

Methods: The in vitro chloroquine sensitivity of paired ring and trophozoite stages from | | cryopreserved
P. vivax clinical isolates from Thailand and two Plasmodium falciparum clones (chloroquine resistant K1 and
chloroquine sensitive FC27) was measured using a modified WHO microtest method and fluorometric
SYBR Green | Assay. The time each stage was exposed to chloroquine treatment was controlled by
washing the chloroquine off at 20 hours after the beginning of treatment.

Results: Plasmodium vivax isolates added to the assay at ring stage had significantly lower median IC to
chloroquine than the same isolates added at trophozoite stage (median ICs, 12 nM vs 415 nM p < 0.01).
Although only 36% (4/11) of the SYBR Green | assays for P. vivax were successful, both microscopy and
SYBR Green | assays indicated that only P. vivax trophozoites were able to develop to schizonts at
chloroquine concentrations above 100 nM.

Conclusion: Data from this study confirms the diminished sensitivity of P. vivax trophozoites to
chloroquine, the stage thought to be the target of this drug. These results raise important questions about
the pharmacodynamic action of chloroquine, and highlight a fundamental difference in the activity of
chloroquine between P. vivax and P. falciparum.
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Background

Plasmodium spp. derive most of their nutritional require-
ments from the digestion of host erythrocyte haemo-
globin. This catabolic process results in the release of toxic
free haem. In response to this oxidative threat, Plasmodium
spp. cross-link free haem monomers to form an inert pol-
ymer known as haemozoin or malaria pigment. It is gen-
erally thought that the catalytic activity of haem
polymerase is the primary target of chloroquine [1,2]. The
majority of studies on the mechanism of chloroquine
have used in vitro cultures of Plasmodium falciparum as a
model. Despite some controversy regarding the stage spe-
cificity of chloroquine [3,4], most agree it is active against
the P. falciparum trophozoite stage, when haemoglobin
catabolism is maximal [5,6]. Unlike P. falciparum, it is not
yet possible to continuously culture Plasmodium vixax,
consequently little is known about the mode of action of
chloroquine against this species. Despite the emergence of
resistance [7], chloroquine is still widely used as the first
line of treatment of vivax malaria, due to its relatively
good safety profile and low cost. Ex vivo studies on clinical
P. vivax isolates suggest that, in contrast to P. falciparum,
chloroquine has little effect on the trophozoite stage.
Powell and Burgland [8] and recently Suwanarusk et al [9]
have shown that the chloroquine susceptibility of P. vivax
depends on the stage of parasite initially exposed to the
drug. Isolates that are predominantly at the ring stage
(ring to trophozoite ratio RT>1) have a significantly lower
ICs, than isolates with a RT<1, even if a paired analysis is
considered [10]. However these observations on stage spe-
cificity are confounded by an unequal time exposure to
chloroquine, RT>1 isolates being exposed to chloroquine
for ~40 hours before harvest, as opposed to RT<1 isolates
which are only exposed for ~24 hours. The objective of
this study was to better understand the stage specific
action of chloroquine against P. vivax using synchronous
cryopreserved isolates and a uniform drug exposure time.

Methods

Plasmodium vivax isolate collection and P. falciparum
clones

The eleven cryopreserved isolates of P. vivax used in this
study were obtained from Mae Sod District, Tak Province,
located on the North Western border of Thailand. These
isolates were collected as part of an earlier published study
by Kosaisavee et al [11]. All P. vivax isolates were obtained
and used in accordance with a protocol approved with by
the ethical Committee on Human Rights Related to
Human Experimentation, Mahidol University, Bangkok.
Samples were only taken after written consent was given
and the study was explained in Karen, Myanmese or Thai.
Isolates were cryopreserved and thawed as described pre-
viously [11]. The microscopic speciation of the P. vivax
isolates were cross-checked using a real-time PCR meth-
odology [12]. Two P. falciparum clones, K1 (chloroquine
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resistant) and FC27 (chloroquine sensitive) were used to
quality control the drug plates and also served as a P. fal-
ciparum comparator for the P. vivax assays.

In vitro culture and stage sensitivity assays

A modified WHO schizont maturation assay was used to
test the antimalarial susceptibility of P. vivax and P. falci-
parum isolates as described previously [13]. A 2% haema-
tocrit Blood Media Mixture (BMM), consisting of McCoy's
5A and 20% AB+ human serum was made for P. vivax and
P. falciparum isolates. 200 pl of BMM, was added to each
well of pre-dosed drug plates containing serial dilutions
chloroquine (3 to 2,992 nM). Pre-dosed drug plates con-
taining the BMM were placed in a gas chamber containing
5% CO,, 5% O, and 90% N, at 37.5°C, until > 50% of
parasites in the drug-free control had matured to sch-
izonts (40 hours).

To assess the stage specificity of chloroquine activity, cry-
opreserved synchronous P. vivax and P. falciparum were
thawed and split. Half of the sample was added to the pre-
dosed drug plates immediately (Figures 1 and 2) and cul-
tured as described above. After 20 hours in the presence of
chloroquine, this ring stage treatment was washed once in
RPMI 1640 and returned to the incubator with fresh chlo-
roquine free media, for an additional 20 hours. The other
half of the thawed isolate was added to a flask and cul-
tured for 20 hours in chloroquine free media. After 20
hours, the predominantly trophozoite isolate, which had
been matured in the flask, was added to the pre-dosed
plates. Both treatments were harvested approximately 40
hours after the initial incubation. The effect of chloro-
quine on rings and trophozoites (chloroquine exposure
for 40 hours) was tested in P. falciparum by not washing
the ring stage treatment in an additional set of duplicate
wells. Due to a limited amount of cryopreserved P. vivax
sample available for testing, the effect of chloroquine over
the entire 40 hours culture period used the original field
in vitro CQ sensitivity data collected on the 11 isolates in
2004 [11]. All P. falciparum clone experiments were con-
ducted in triplicate, quadruplicate or sextuplicate.

Assessing schizont maturation

Schizont maturation was determined by two methods:
using microscopy [13,14] and a modified SYBR Green I
based assay [15]. Microscopic evaluations were based on
earlier work by Rieckmann et al [14] and were done by
counting the number of mature schizonts with >five more
nuclei out of a total 200 asexual parasite in every thick
film. The percentage schizont counts read in the drug
wells were then expressed as a proportion of that of drug
free controls. The SYBR Green I assay used was modified
from the method previously described by Smilkstien et al
[15] After the 40 hours incubation period, supernatant
was removed and replaced with unsupplemented RPMI
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The inhibition of Plasmodium vivax schizont development at increasing concentrations of chloroquine depend-
ent on the initial stage (Ring or Trophozoite) exposed to 20 hours of chloroquine over a 40 hour culture

period. The photomicrographs of thick films, show representative examples of drug effect on Plasmodium vivax at low medium
and high concentrations of chloroquine. The black (microscopic) and green lines (SYBR Green ) represent the median inhibi-
tion of schizont development relative to a drug free control. Medians lines are only derived from assays with paired SYBR

Green | and microscopic results.(N = 4).

1640 (Gibco/Invitrogen), and a 50 pL of a fluorochrome/
lysis mixture (consisting of 50 mM TRIS-base, 12.5 mM
EDTA, 0.02% w/v saponin (Sigma Chemical Co., St Louis,
MO, USA), 0.2% v/v Triton-X100, and a 1:2000 dilution
of freshly thawed stock (x10 000) SYBR Green I (Invitro-
gen). This was dark incubated at room temperature for at
least 60 minutes, and read at wavelengths of 485 nm and
535 nm excitation and emission respectively. The relative
fluorescence units (RFU) output from each well had time

zero fluorescence removed, and was normalized to the
RFU from drug free controls.

Chloroquine concentrations
The amount of chloroquine added to the plates and the
effectiveness of the chloroquine wash step were investi-
gated by high performance liquid chromatographic
(HPLC) analysis [16]. Two chloroquine plates were incu-
bated with 200 pl of 2% haematocrit BMM for 20 hours.
One plate was subjected to a wash as defined above, and
the other plate was not. Complete RPMI medium was
then added to both plates were and the contents from trip-
licate wells were combined and transferred to 2 ml cryovi-
als. The vials were stored at -80° C and shipped on dry-ice
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Figure 2

The inhibition of Plasmodium falciparum (Chloroquine resistant K| clone) schizont development at increasing
concentrations of chloroquine dependent on the initial stage (Ring or Trophozoite) exposed to 20 hours of
chloroquine over a 40 hour culture period. The photomicrographs of thick films, show representative examples of drug
effect on Plasmodium falciparum at low medium and high concentrations of chloroquine. The black (microscopic) and green
lines (SYBR Green |) represent the median inhibition of schizont development relative to a drug free control. Medians lines are
only derived from assays with paired SYBR Green | and microscopic results.(N = 6).

to the Australian Army Malaria Institute where they were
stored at -80°C until analysis. Chloroquine concentra-
tions were measurement by normal-phased HPLC using
fluorescence detection. The lower limit of quantification
was 5 ng/ml, using 0.5 ml samples.

Analysis

The growth responses for each of the treatments and
assays were converted to a percentage of the drug free pos-
itive control 40 hours. The background 0 hours was sub-

tracted from each of the data points. IC;, data was
calculated using WinNonLin (version 4.1, Pharsight)
using a compiled Pharmacodynamic, Inhibitory Effect
Sigmoid E_ ,, Model. IC;, data was only used from curves
where the predicted Emax =1 +/- 0.3 and the E;= 0 +/- 0.3.
Non parametric tests; Wilcoxon (2 related samples) or
Friedman's (3 related samples) were used to compare the
median ICs, data (SPSS ver.14.0).
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Results

At least 50% of Plasmodium vivax trophozoites developed
to mature schizonts in spite of 20 hours exposure to 2,992
nM of chloroquine during the trophozoite stage of the life
cycle (Figure 1). In contrast, P. vivax ring stage and P. fal-
ciparum ring and trophozoite stage treatments were all
sensitive to chloroquine concentrations as low as 100 nM
(Figures 1 and 2). All of the P. falciparum SYBR Green I
assay were successful (6/6) and the derived ICg,s were
similar to the microscopic method. Although only 36%
(4/11) of the P. vivax SYBR Green I assays were successful
(insufficient signal to background ratio) and these data
showed similar trends to the microscopic assay (Figure 1).
Due to the low success rate of the P. vivax SYBR Green 1
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assay, further analysis in this study is limited to the micro-
scopic assay. The Plasmodium vivax isolates added to the
assay at ring stage irrespective of the length of chloroquine
exposure had significantly lower median ICs to chloro-
quine than the same isolates added at trophozoite stage
(median ICs; 12 nM vs 415 nM p < 0.01) (Figure 3). The
sensitivity of P. falciparum (K1 and FC27) to chloroquine
was not significantly effected by the stage first exposed or
time of chloroquine exposure (median ICy, for K1: 31 vs
45 nM p = 0.17 and FC27; 12 vs 16 nM p = 0.37) (Figure
3). The chloroquine IC, values for our K1 clone of P. fal-
ciparum were considerably less that those published by
Elueze et al (K1 CQ IC;,; 214 nM) and Fivelman et al. (K1
CQICsqy; 266 nM) [17,18]. It is conceivable that these dif-
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The sensitivity of Plasmodium vivax isolates and Plasmodium falciparum clones (K1 and FC27) to chloroquine
(CQIC5°nM) when; rings and trophozoites are exposed to chloroquine for 40 hours (R&T); exposed to chloroquine for 20
hours at the ring stage (R) and trophozoite stage (T). Red dotted lines connect related samples. Solid black lines represent the

median CQIC5%nM for each treatment.
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ferences are due to the methodology (microscopy vs
hypoxanthine incorporation) and non-linear analysis
program used. Kosaisavee et al. showed that the mean CQ
ICs, of K1 determined by the isotopic method was 2.5
fold higher than the microscopic method [11]. For the
past five years consistent K1 CQ ICs,s of less than 150 nM
[9] have been recorded on a K1 clone from the Australian
Army Malaria Institute, Brisbane, confirmed to be a pfcrt
CVIET mutant.

HPLC analysis showed that washing of the BMM was suc-
cessful in reducing the chloroquine concentrations by at
least 93%(mean 95.4 + 2.2%, n = 5 paired samples).

Discussion

Chloroquine resistance mechanism in P. vivax different to
P. falciparum

The rapid spread of chloroquine resistant vivax malaria
has provided impetus for studies on molecular markers
associated with this phenotype [7]. In P. falciparum SNPs
in pfcrt are strongly associated with reduced chloroquine
sensitivity [19,20]. However, molecular changes in its P.
vivax homolog, pvcgl0 are not linked to changes in the
chloroquine sensitivity phenotype of this species [9]. This
finding implies that chloroquine resistant P. vivax has a
different molecular mechanism for avoiding the antima-
larial effects of chloroquine. It could be that chloroquine
resistant P. vivax has a yet to be identified transporter for
limiting the effect of chloroquine on haem polymerase, or
that that chloroquine has a completely different molecu-
lar target not related to the inhibition of haemozoin for-
mation. Data from this and earlier studies support the
latter view, by confirming the almost complete absence of
chloroquine activity against P. vivax trophozoites, the
stage where most of the haem polymerase activity occurs.

Innate resistance of P. vivax trophozoites

The stage specific effect of chloroquine shown in this
study of chloroquine sensitive P. vivax isolates from Thai-
land, and earlier studies using resistant P. vivax isolates
from Papua [9,10] demonstrates that this is an innate trait
of P. vivax that is not restricted to chloroquine resistant
strains. Two plausible explanations for the innate resist-
ance of P. vivax trophozoites to chloroquine are; firstly an
inefficient haem polymerase binding site for chloroquine;
or secondly a wild type vacuolar transporter system that
reduces the intra-vacuolar concentration of chloroquine
below the threshold for haem polymerase inhibition.
Interestingly, innate resistance to another antimalarial,
sulphadoxine has already been described in P. vivax.
Innate resistance to the antifolate sulphadoxine is due to
the change of one residue at v585 on the pudhps sul-
phadoxine binding site (relative to A613 pfdhps) confer-
ring a significantly lower sensitivity to sulphadoxine than
P. falciparum. Any polymorphisms in pvdhps will only
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modulate the level of this resistance [21,22]. However, the
ring stage and trophozoites of P. vivax are equally insensi-
tive to sulphadoxine, unlike the stage specific effect of
chloroquine on the ring stages of P. vivax.

Chloroquine sensitive ring stage of P. vivax: possible
molecular targets

Aside from variation in the chloroquine sensitivity pheno-
type between P. vivax strains and universal trophozoite
resistance, chloroquine effects the ring stage of P. vivax.
Therefore, the most important question raised by this
study is, by which mechanism does chloroquine effect
ring stage P. vivax? Although most research on chloro-
quine action has focused on the digestive vacuole, earlier
studies suggest that the primary antimalarial action of
chloroquine is within nucleus [23-27]. Of note, Picot et al
showed that after CQ treatment, oligonucleosomal DNA
fragmentation was observed with a chloroquine sensitive
strain of P. falciparum, suggesting CQ action on the
nucleus leading to apoptosis [28]. CQ also interferes with
the DNA synthesis step of the repair process, most likely
due to direct binding to repair substrates [29]. Recent
studies have shown that chloroquine can destabilize the
mRNA in eukaryotic cells by a pH-dependent mechanism
[30]. As all of the above processes are vital to the early
stages of intra-erythrocytic life, it is hypothesized that the
ring stage of P. vivax is vulnerable to the effect of chloro-
quine on its nucleus as compared to the trophozoite stage
when most of the cellular infrastructure is already estab-
lished with a transporter system capable of limiting fur-
ther chloroquine damage. If this is the case, intra species
variations in P. vivax chloroquine sensitivity might be
associated with differential rates of parasite development,
faster developing parasites capable of rapidly expressing
the protein systems which limit the effects chloroquine on
its nucleus. Indeed recent findings indicate that rapidly
growing P. vivax [9] and P. falciparum [31] are less sensi-
tive to chloroquine.

Conclusion

The diminished activity of chloroquine on P. vivax tro-
phozoites, the stage thought to be the central target of this
drug, raises important questions about the pharmacody-
namic action of chloroquine. The established biological
and genetic differences between P. vivax and P. falciparum
are further highlighted by the results of this study. Clearly
future studies are needed to determine the specific mech-
anism of chloroquine activity in P. vivax. However, the
application of models purely focusing on the digestive
vacuole is unlikely to succeed in P. vivax.
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