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Abstract
Background: Accurate diagnosis is essential for prompt and appropriate treatment of malaria. While rapid diagnostic 
tests (RDTs) offer great potential to improve malaria diagnosis, the sensitivity of RDTs has been reported to be highly 
variable. One possible factor contributing to variable test performance is the diversity of parasite antigens. This is of 
particular concern for Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-detecting RDTs since PfHRP2 has been 
reported to be highly variable in isolates of the Asia-Pacific region.

Methods: The pfhrp2 exon 2 fragment from 458 isolates of P. falciparum collected from 38 countries was amplified and 
sequenced. For a subset of 80 isolates, the exon 2 fragment of histidine-rich protein 3 (pfhrp3) was also amplified and 
sequenced. DNA sequence and statistical analysis of the variation observed in these genes was conducted. The 
potential impact of the pfhrp2 variation on RDT detection rates was examined by analysing the relationship between 
sequence characteristics of this gene and the results of the WHO product testing of malaria RDTs: Round 1 (2008), for 
34 PfHRP2-detecting RDTs.

Results: Sequence analysis revealed extensive variations in the number and arrangement of various repeats encoded 
by the genes in parasite populations world-wide. However, no statistically robust correlation between gene structure 
and RDT detection rate for P. falciparum parasites at 200 parasites per microlitre was identified.

Conclusions: The results suggest that despite extreme sequence variation, diversity of PfHRP2 does not appear to be a 
major cause of RDT sensitivity variation.

Background
Malaria is one of the most important infectious diseases
of humanity, and continues to cause significant mortality
and morbidity worldwide. Early diagnosis is important
for case management and treatment of the disease, and in
guiding treatment for non-malaria fevers. Symptom-
based clinical diagnosis is inaccurate, and contributes to

poor management of febrile illness, over-treatment of
malaria, and may promote drug resistance to current
anti-malarials [1].

Rapid diagnostic tests (RDTs) for malaria have the
potential to improve case management and thereby
reduce morbidity and mortality, especially in remote
areas, facilitating the timely delivery of appropriate treat-
ment. Indeed, many RDTs today can achieve excellent
sensitivity and specificity for Plasmodium falciparum at a
parasitaemia greater than 500 parasites per microlitre
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(parasites/μL) [2]. At lower parasitaemia, however, vari-
ability in sensitivity is more common [3-7].

Today, over 150 malaria RDTs are commercially avail-
able, with most using a P. falciparum detecting compo-
nent targeting P. falciparum histidine-rich protein 2
(PfHRP2). The gene encoding the protein, pfhrp2, is a
single copy subtelomeric gene located on chromosome 7
encoding an amino acid sequence containing 34% histi-
dine, 37% alanine and 10% aspartic acid [8-11]. PfHRP2 is
characterized by multiple contiguous repeats of the
sequences AHH and AHHAAD [8,9]. PfHRP2 is a 60-105
kD water-soluble protein specific to P. falciparum, syn-
thesized and present throughout the asexual life cycle,
identified as a surface-exposed protein in infected eryth-
rocytes [8-10,12-18]. The protein is also found circulating
in the peripheral blood of infected individuals [19]. These
features make PfHRP2 a good target for diagnosis of P.
falciparum infection.

Pfhrp3 encodes P. falciparum histidine-rich protein 3
(PfHRP3), also known as the small histidine-rich protein
(SHARP), located near one end of chromosome 13
[17,20]. Pfhrp3 shares many structural similarities with
pfhrp2. Both genes have an interrupted structure and
contain a signal peptide sequence in exon 1 followed by
an intron. The intron is followed by the main coding
region, exon 2. Exon 2 in both pfhrp2 and pfhrp3 encodes
histidine-rich amino acid repeats beginning 75-90 nucle-
otides downstream from its start [18]. Although the histi-
dine composition of PfHRP3 is slightly less than that of
PfHRP2 (28% compared to 34%), both genes share many
histidine and alanine rich repeats [10]. It has been sug-
gested that, due to their similarity, both genes are related,
derived from an ancestral duplication and interchromo-
somal divergence from a common ancestral gene, and
may complement each other in function [8,10,17,18].
Antibodies against PfHRP2 cross-react with PfHRP3
[8,18]. Thus, PfHRP3 also contributes to the detection of
P. falciparum infections in PfHRP2-detecting malaria
RDTs.

As part of the World Health Organization (WHO) and
Foundation for Innovative and New Diagnostics (FIND)
Malaria RDT Quality Assurance Programme, the levels of
diversity for antigens targeted by malaria RDTs have been
systematically investigated. While parasite aldolase and
pLDH appear to be highly conserved [21-23], pfhrp2 was
found to be highly variable. In the preliminary analysis of
74 isolates from mostly Southwest Pacific and Asian
countries, a significant sequence variation in pfhrp2 and
pfhrp3 was observed in isolates within the same country
and between different countries [24]. This raised a seri-
ous concern that the sequence variation could result in
significant variation in the presence and frequency of
epitopes recognized by monoclonal antibodies (MABs)
and hence impact on the RDT detection sensitivities for

different parasites. This concern was strengthened by a
regression analysis based on 16 cultured parasite lines
tested where the number of type 2 (AHHAHHAAD) and
type 7 (AHHAAD) repeats in PfHRP2 were identified to
be a contributing factor to the variable sensitivity
reported at low level parasitaemia (below 250 parasites/
μl) [24,25]. While this established extensive variation and
a preliminary link between sequence diversity and RDT
sensitivity within this sample set, it did not comprehen-
sively cover diversity from all areas of global malaria
transmission or testing sensitivity on a large set of sam-
ples with a wide range of RDT products.

The aims of the current study were to extend the diver-
sity investigation to include isolates from African and
South American countries, and to better understand the
implication of global diversity in pfhrp2 and pfhrp3 on
the performance of PfHRP2- detecting RDTs. In this
paper, the global diversity of pfhrp2 and pfhrp3 was
examined and the distribution of variants mapped. Fur-
thermore, the results of the recently completed WHO
product testing of malaria RDTs: Round 1 (2008) [26]
were used to examine the effect of PfHRP2 sequence
structure on RDT sensitivity.

Methods
Parasite lines and isolates
Field isolates of P. falciparum were obtained from
patients and preserved on filter paper, and laboratory
lines were cultured at the Australian Army Malaria Insti-
tute (AMI). Patient blood sample collection was coordi-
nated by WHO, TDR and FIND and conducted by
investigators and institutions within the WHO-FIND
Malaria RDT Quality Assurance Programme. Protocols
were approved by each collection country's Ethics Review
Board and the WHO Research Ethics Review Committee.
Fingerprick blood samples were obtained from consent-
ing individuals, and three drops of patient blood were
collected onto Whatman Filter paper (Grade 1, 9.0 cm,
Whatman International Ltd, Maidstone, England) and
air-dried for storage. All filter papers were sent to AMI
for processing which was approved by the Australian
Defence Human Research Ethics Committee (ADHREC
377/05). Confirmation of parasitaemia was obtained by
microscopy for each patient and was also conducted for
cultured lines. The 458 samples used to examine pfhrp2
(including 74 reported in [24]) and their country of ori-
gins are detailed in Table 1. The subset of 80 samples that
was used to examine pfhrp3 is also listed in Table 1.

DNA isolation, PCR amplification and sequencing of pfhrp2 
and pfhrp3
Parasite DNA was extracted, from both patient blood
preserved on filter paper and from packed red cells of
cultured isolates, using the QIAgen QiaBlood kit (QIA-
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GEN, Germany) following the manufacturer's instruc-
tions. Using the same primers and PCR conditions
described previously [24], close to full length exon 2 of
the pfhrp2 (+65bp to stop codon) and pfhrp3 (+56bp to
1bp before stop codon) genes were amplified and
sequenced (ABI), and the nucleotide sequence translated
to corresponding amino acids (aa).

Translation of DNA sequences and analysis of repeats
The same bar code system as previously reported was
used to ascertain the repeat types present in pfhrp2 and
pfhrp3 [24]. Six additional codes were described, and
were designated types 19-24. These newly identified

repeats are detailed in Table 2. The sequences reported in
this article have been deposited in the GenBank database
(GenBank accession numbers for pfhrp2 FJ871160 to
FJ871401; GenBank accession numbers for pfhrp3
GU194966 to GU195043). The sequences were aligned
using Microsoft Excel software to examine similarity
between isolates. Identical sequences were identified and
assigned to the same grouping, while different sequences
were listed separately.

Statistical analyses
Variability of repeat frequencies for pfhrp2 and pfhrp3
within and between isolates of different geographic origin

Table 1: Country Origins (ISO code) and number Plasmodium falciparum isolates sequenced for prfhp2 and pfhrp3 and the 
number of different pfhrp2 sequence types.

Region/Country pfhrp2 pfhrp3 Region/Country pfhrp2 pfhrp3

n No. types n No. types N No. types n No. types

AFRICA CENTRAL & SOUTH AMERICA

Benin (BJ) 1 1 Brazil (BR) 9 6 2 1

Burkina Faso (BF) 1 1 Colombia (CO) 12 8 1 1

Cameroon (CM) 2 2 Ecuador (EC) 1 1

Central African 
Republic (CF)

13 13 1 1 Haiti (HT) 10 6 4 4

Gambia (GM) 1 1 1 1 Honduras (HN) 3 2

Ghana (GH) 6 6 Peru (PE) 18 4 6 2

Guinea (GN) 1 1 Santa Lucia (LC) 1 1

Kenya (KE) 30 30 6 6 Suriname (SR) 3 1 2 1

Liberia (LR) 3 3 Sub total 57 15

Madagascar (MG) 17 17 ASIA

Malawi (MW) 2 2 Cambodia (KH) 32 24 1 1

Nigeria (NG) 80 74 16 11 China (CN) 10 7 4 3

Niger (NE) 1 1 Indonesia (ID) 5 4

Sierra Leone (SL) 2 2 1 1 Malaysia (MY) 2 2 1 1

Sudan (SD) 3 3 Myanmar (MM) 5 5

Tanzania (TZ) 39 34 2 2 Philippines (PH) 45 27 7 4

Uganda (UG) 2 2 Thailand (TH) 7 6 4 4

Zambia (ZM) 2 2 Vietnam (VN) 5 4

Sub total 206 27 Sub total 111 17

SOUTHWEST PACIFIC

Papua New Guinea 
(PG)

17 12 7 6

Solomon Is. (SB) 35 17 13 9

East Timor (TP) 24 12

Vanuatu (VU) 8 4 1 0

Sub total 84 21

Global total 458 80
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was examined statistically, and observations made on dif-
ferences in exon length, motif use, and frequency distri-
bution. GraphPad PRISM® (GraphPad Software, La Jolla,
USA) and Statistical Package for the Social Sciences®

(SPSS Inc, Chicago, USA) were employed to analyse the
sequence data for the following purposes:

1. Geographical differences in the sequence charac-
teristics. Differences in the total number of amino
acids and the number of repeats of each type,
between countries (38 countries) and between
regions (four different regions, grouped to Africa,
Southwest Pacific, Asia and South America) were
tested using the Kruskal-Wallis test. Tukey's test was
used for post hoc multiple comparisons. To investi-
gate whether a correlation existed between amino
acid length of PfHRP2 and PfHRP3, we examined the
relationship of total amino acid length for both genes.
Further analysis of pfhrp2 repeat types 2 and 7 and
pfhrp3 repeat types 15, 16, 17 and 18, was conducted

to look for individual country differences in the num-
ber of these repeats. The one sample t-test was used
to determine whether there were significant differ-
ences between a given country's mean repeat number,
compared to mean number for all countries com-
bined.
2. Predictive value of sequences to RDT performance.
The sequence characteristics for the 79 isolates used
in the WHO Product Testing of Malaria RDTs (Round
1) were selected [26]. These geographically varying
isolates had different pfhrp2 sequences and repeat
structures, classified as type A (≥100), B (50-99), or C
(< 50), according to the frequency of their type 2 ×
type 7 repeats [24]. Using only the results from the
PfHRP2-detecting RDTs, the percent of the products
testing positive to each parasite isolate at 200 para-
sites/μL was determined and linear regression used to
investigate whether sequence structure and length
influenced the detection rate.

Results
Variation in pfhrp2
The PCR product of pfhrp2 exon 2 varied markedly in
size between different parasite isolates. The amplified
exon 2 size within the entire set of 458 isolates/laboratory
lines examined ranged from 561bp to 918bp, with an
average of 783 bp. The size variation was largely attrib-
uted to variation in numbers of 27- and 18- bp repeats.
Three hundred and eighteen different pfhrp2 sequences
were identified consisting of combinations of 20 different
amino acid repeats (Table 2). Two hundred and fifty nine
isolates had a unique pfhrp2 sequence, while the remain-
ing 59 sequences were seen in > 1 parasite isolate. Of
these 59 sequences, 36 (61%) were shared by isolates from
the same country, while the remaining 23 (39%) were
common to isolates from different countries (Table 3), of
which 10 (44%) were shared within the region and 13
(56%), between different regions.

The number of different pfhrp2 sequence types
observed in each country is listed in Table 1. To demon-
strate the level of sequence diversity the ratio of the num-
ber of pfhrp2 sequence types to total number of
sequences in a country was calculated for all countries.
The overall ratio is 0.69 (318 unique sequence/458 iso-
lates) with a unique pfhrp2 type observed in every 1.44
parasite isolates examined. The ratio varied between dif-
ferent countries. Figure 1 shows the range of ratios for
countries with more than 5 pfhrp2 sequences analysed.
Isolates from Peru (n = 18, ratio 0.22) showed the least
pfhrp2 sequence variability among all countries sampled
with the 18 isolates sharing only 4 different sequence
types. The Solomon Islands and The Philippines showed
medium range sequence diversity. Of the Solomon Island
isolates (n = 35, ratio 0.48), 28 samples combined to give

Table 2: The presence (+) and absence (-) of amino acid 
repeats in PfHRP2 and PfHRP3.

Code Repeat PfHRP2 PfHRP3

1 AHHAHHVAD + +

2 AHHAHHAAD + +

3 AHHAHHAAY + -

4 AHH + +

5 AHHAHHASD + -

6 AHHATD + -

7 AHHAAD + +

8 AHHAAY + -

9 AAY + -

10 AHHAAAHHATD + -

11 AHN + -

12 AHHAAAHHEAATH + -

13 AHHASD + -

14 AHHAHHATD + -

15 AHHAHHAAN - +

16 AHHAAN - +

17 AHHDG - +

18 AHHDD - +

19 AHHAA + -

20 SHHDD + +

21 AHHAHHATY + -

22 AHHAHHAGD + -

23 ARHAAD + -

24 AHHTHHAAD + -

Repeat types not previously reported are underlined.
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10 different sequence types, often identical to sequences
found in isolates from other countries. The remaining
seven Solomon Island isolates each had a distinct unique
sequence. The Philippines isolates (n = 45, ratio 0.6)
showed slightly greater diversity, with the 32 sequences
combining to give 14 unique sequences, and the remain-
ing 13 isolates having unique sequences. The greatest
variability in pfhrp2 sequence was found in the Central
African Republic (n = 13), Ghana (n = 6), Kenya (n = 30),
Madagascar (n = 17) and Myanmar (n = 5), where no
sequence was identical to another either within the coun-
try (ratio = 1.0) or with any other country.

The length of the deduced PfHRP2 sequence encoded
by the exon 2 varies from 187 to 306 aa (average 252.2 aa,
Figure 2). When compared to the global mean, the mean
of amino acid length was found to be significantly lower
in Vanuatu (mean = 228.3, P < 0.01) and Cambodia (mean
= 236.3, P < 0.01) and significantly higher in China (mean
= 270.1, P < 0.01), Brazil (mean = 261.1, P < 0.05) and
Haiti (mean = 262.2, P < 0.05, Figure 2). In Vietnam
(mean = 274.4) the total aa length was greater than the
global mean of 252.2, however due to small sample size it
was not possible to gauge statistical significance. The
lowest overall variation in the number of total amino

Table 3: The country (by ISO code) distribution of shared pfhrp2 and pfhrp3 sequences.

pfhrp2

Seq. type Shared in
Country

Seq. type Shared in
Country

Seq. type Shared in
Country

a SB, PH u KE, TP, TH ao NG

b ID, NG v CN ap CO, HT

c PG, VU w SB aq CO, PE

d UG, KH, MY, PH x BR, PE, ar GH, NG

e SB, PH y HN, LC as TH

f SB, PH z NG at CO, KH

g PH aa LR, PG au NG

h SD, SB ab BR av NG, TZ, PE, KH

i SB ac PH aw KH

j PH ad HT ax KH

k PH ae PH ay KH, ID, MM

l PH af TP az KH

m VN ag BR ba CO

n VU ah CN bb NG

o PH ai CN bc PH

p TP aj BR, SR bd NG, TZ

q SB ak NG be PG, ID

r TP al NG bf NG, SB

s SB am PG, SB bg SB

t GH, PH, TH an PE

pfhrp3

bh PE bn CN, SR bs NG, SB

bi KE, TH, CO, HT bo NG, CF, MY bt PG, SB, HT

bj NG bp PG, SB bu PG, KH

bk NG bq KE, PH bv NG, VU

bl PH br PG, TH bw SB

bm NG, CN, PE, BR
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acids for pfhrp2 for this sample set was seen in Indonesia
(range 238-260 aa), the highest variation in Papua New
Guinea (PNG) (194-306 aa), Nigeria (200-300 aa), and
Madagascar (203-303 aa) (Additional file 1: Table S1).

Almost all (455/458, 99.3%) deduced amino acid
sequences of PfHRP2 began with the type 1 repeat and
universally (100%) concluded with the type 12 repeat.
While most sequences had conserved start and end
amino acid repeats, the sequence varied considerably in
the organisation of the repeats and the number of each
repeat in the central region of the sequence. A conserved
motif of repeat types 2, 3, 5, 7, 8, 2, 7 was found in the
central region of the sequence in 201 of the 458 isolates
sequenced (44%). In a further 38% (174/458) of the
sequences part of this motif was present. A total of 83
sequences (18%) did not contain the motif.

A total of 20 different types of amino acid repeats were
identified in 458 PfHRP2 sequences (Table 2). Repeat
type 2 and type 12 were observed in 100% of the isolates
sequenced (Additional file 2: Table S2). Types 1, 6 and 7
were found in over 97% of isolates (Additional file 2:
Table S2). The prevalence of repeat types 3, 5, 8 and 10
was found to differ between the geographic areas consid-
ered: 100% in parasites from some areas and between 70%
and 100% in other areas. The type 4 repeat was present in
less than 50% of isolates in all regions. The remaining 10
types were limited to a few isolates, and some were lim-
ited to a cluster of countries (Additional file 2: Table S2).

With the exception of type 12 the number of each
repeat type was observed to vary between different para-
site isolates from the same country and between coun-

tries. When grouped by region, significant differences
were found between regions for the number of repeat
types 1, 2, 6 and 7 (P < 0.0001), as well as 3, 4, 5, 10, 11, 13
and 14 (P < 0.05). Further analysis was performed to
examine differences in the number of types 2 and 7
repeats between countries (countries with less than 5
samples were excluded). Figures 3 and 4 illustrate the
variations across different countries in the number of
repeat types 2 and 7, respectively. Countries with signifi-
cantly higher or lower numbers of type 2 and 7 repeats
than their global means are identified and indicated in
Additional file 1: Table S1.

Variation in pfhrp3
The size of the pfhrp3 gene fragment amplified by PCR
ranged from 294 bp to 552 bp, largely due to variation in
numbers of 18- and 15- bp repeats. 42 different sequence
types were identified from 80 isolates originating from 20
countries. Twenty-six isolates had a unique pfhrp3
sequence, while the remaining 54 isolates combined to
give a total 16 sequence types. Of these 16 sequence
types, 4 types were shared by isolates from the same
country and the remaining 12 sequence types were com-
mon to isolates from different countries (Table 3). The
ratio of unique over total number of sequences calculated
for pfhrp3 was 0.525 (42/80) indicating that there is a dif-
ferent sequence every 1.90 parasite isolates examined for
pfhrp3. Overall the level of diversity in pfhrp3, as mea-
sured by the proportion of unique sequences was signifi-
cantly lower than that observed for pfhrp2 (P < 0.01). The
lowest ratio was observed in Peru (n = 6, ratio 0.33), fol-
lowed by Philippines (n = 7, ratio 0.57) and Solomon
Islands (n = 13, ratio 0.69), a similar rank observed for
pfhrp2 for these countries. A higher ratio was observed
for PNG (n = 7, ratio 0.85) and Kenya (n = 6, ratio 1.0).

A total of nine different amino acid repeats were identi-
fied from the PfHRP3 sequences (Table 2). All deduced
amino acid sequences of the PfHRP3 began with the type
1 repeat, and ended with a type 4 repeat. All sequences
contained each of the nine different amino acid repeat
types with varying frequency (Additional file 3: Table S3).
Two sequences also contained one copy of the type 2
repeat. Most PfHRP3 sequences had one non-repetitive
region while some isolates from three countries showed
two non-repetitive regions (Additional file 3: Table S3).
The non-repetitive region located in the centre of the
sequence was identical for all sequence types, except for
those sequences with two non-repetitive regions which
consistently ended in a type 20 repeat. Upstream of the
non-repetitive region, the sequences showed variability
in the number of type 16 repeats (AHHAAN). Down-
stream of the non-repetitive region varied in the number
of type 17 and 18 repeats in isolates from different coun-
tries (Additional file 3: Table S3).

Figure 1 Ratio of number of unique sequences to total sequences 
for pfhrp2 for countries with a minimum of 5 isolates. Numbers in 
brackets indicate the number of samples
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The deduced amino acid sequence of PfHRP3 observed
ranging in length from 98 to 178 aa. The lowest overall
variation in the total number of amino acids for pfhrp3
(Additional file: 3 Table S3) for this sample set was seen in
China (124-150 amino acids), the highest variation in
Nigeria (114-170 amino acids), the Solomon Islands (98-
184 amino acids) and PNG (104-170 amino acids). When
compared with a mean of 144.5 amino acids for total
global isolates, the mean amino acid length was found to
be significantly higher among the samples from Peru
(mean = 168.7, P < 0.01).

PfHRP2 and PfHRP3 amino acid length correlation
To examine whether a correlation existed between amino
acid length of PfHRP2 and PfHRP3, we examined the
relationship of total amino acid length for both genes. No

significant correlation existed between the length of
pfhrp2 and pfhrp3 (P > 0.05).

pfhrp2 and pfhrp3 deletions
Absence of the pfhrp2 gene was only observed in two lab-
oratory adapted lines: Dd2 and D10 [20,27], but not in
any field isolates. The lack of pfhrp3 gene was also only
observed in a laboratory-adapted line of HB3 [17].

Relationship between PfHRP2 sequence diversity and the 
RDT detection rate
The proportion of the 34 PfHRP2-detecting RDTs which
"detected" each of the 79 parasite isolates at a density of
200 parasites/μl was calculated. In the WHO product
testing, "detected" was defined as returning 4/4 positive
tests against an isolate [26]. Linear regression analysis

Figure 2 The length of PfHRP2 (number of aa) in countries with ≥5 samples. Numbers in brackets indicate the number of samples. The dotted 
line indicates the global mean. ^ The mean number is significantly higher than the global mean (p < 0.05); # the mean number is significantly lower 
than the global mean (p < 0.05)
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was used to investigate if there was a relationship
between sequence structure of the PfHRP2 and percent
detected. No significant relationship could be established
between PfHRP2 structure types and percent detected (P
> 0.05).

Discussion
PfHRP2 is the target antigen for many RDTs detecting P.
falciparum. In this study, pfhrp2 from 458 P. falciparum
isolates collected from 38 countries, all major malaria
endemic areas, were sequenced and evaluated. It was
shown that this gene exhibits extensive diversity both
within and between countries and regions. A similar pro-
tein, PfHRP3, also exhibited extensive diversity between
parasite isolates examined. This comprehensive examina-
tion and analysis of the extent of the diversity and geo-
graphic variation in these genes provides important
information for laboratory and field evaluation of malaria

RDTs. It also provides an indication of whether the
genetic diversity in the antigen contributes to the vari-
ability in RDT sensitivity.

Both pfhrp2 and pfhrp3 are located in the subtelomeric
regions of chromosomes. In general, genes located in
telomeric and subtelomeric regions of Plasmodium have
vast genetic diversity, and are highly susceptible to
changes during recombination events [28-33]. Subtelo-
meric regions from different malaria species appear to
have undergone rapid evolution, with significant
sequence variation generated in the complex repeats in
these regions [32,33]. Molecular mechanisms contribut-
ing to the generation of tandemly repeated regions,
changes in the length of repeat blocks and other variation
events include slipped strand mispairing followed by
DNA replication or repair, unequal reciprocal combina-
tion and gene conversion [34-39]. The different organiza-
tion and varying number of repeats observed in both

Figure 3 The number of type 2 repeat present in PfHRP2 in countries with ≥ 5 samples. Numbers in brackets indicate the number of samples. 
The dotted line indicates the global mean. ^ The mean number is significantly higher than the global mean (p < 0.05); # the mean number is signifi-
cantly lower than the global mean (p < 0.05)
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pfhrp2 and pfhrp3 are likely the result of frequent recom-
bination of the chromosomes. Therefore, a correlation
between malaria transmission intensity and pfhrp2 diver-
sity should be expected, as malaria infections in high
transmission settings often involve co-infection of multi-
ple strains which increase the probability of recombina-
tion during sexual reproduction in the mosquito vector.
Indeed, this general trend was observed in this study with
the ratio of different pfhrp2 sequence types to total
sequences being higher in countries with high transmis-
sion intensity such as in Africa, and lower in South Amer-
ican and Asian countries. However, this may also reflect
differences in the geographical spread of collections
within countries, which varied between sites.

The function of PfHRP2 still remains to be determined.
Early theories suggested that PfHRP2 may be involved in
detoxification of free haem by converting it to inactive
haemozoin [40,41]. Other theories suggest that PfHRP2
may be involved in remodeling the infected erythrocyte

cytoskeleton [42] and in modulating host immune
responses [43]. The extensive diversity in the pfhrp2
sequence provides evidence that the function(s) of the
molecule is not affected by the sequence diversity in exon
2 and that parasites with a particular pfhrp2 sequence do
not appear to have a significant fitness or survival advan-
tage. The host immune responses may also contribute to
the maintenance of diversity by selecting for immuno-
logicly different types.

A mechanism of chromosome breakage and healing is
believed to contribute to generation of deletions in vari-
ous parasite chromosomes [27]. Chromosome deletions
at the pfhrp2 locus of chromosome 7 and pfhrp3 locus of
chromosome 13 have been observed in laboratory-
adapted lines [17,20,27], and in field isolates from the
Amazon region of Peru [44]. This observation of gene
deletions in field isolates suggests that PfHRP2-detecting
RDTs may not be reliable for detecting P. falciparum
infections in this region of South America, and also

Figure 4 The number of Type 7 repeat present in PfHRP2 in countries with ≥5 samples. Numbers in brackets indicate the number of samples. 
The dotted line indicates the global mean. ^ The mean number is significantly higher than the global mean (p < 0.05); # the mean number is signifi-
cantly lower than the global mean (p < 0.05)
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raised a serious question as to whether parasites lacking
PfHRP2 and PfHRP3 may exist in other parts of the world
and what are possible fitness or survival advantages. In
the 485 isolates, collected in over 30 malaria endemic
countries, that we examined, we did not observe any dele-
tions of pfhrp2 or pfhrp3 in any field isolates, suggesting
that the parasites with gene deletions may not be wide-
spread outside of South America. However, it should be
noted that the sampling did not include some endemic
regions (e.g. South and Western Asia) and the number of
samples examined for some countries was quite small,
not coming from different areas within the country. To
ensure the performance of RDTs, efforts should be taken
to monitor the existence and spread of parasites with
gene deletions, especially when false negative results
associated with a high parasitaemia are reported.

Pfhrp2 and pfhrp3 variability appears to occur indepen-
dent of the other, as no correlation between the lengths of
the two genes was evident. However, both proteins share
several repeats, such as type 1 and 2 repeats. These
shared repeats are probably the basis for observed cross
reactivity between PfHRP2 and PfHRP3 by monoclonal
antibodies against PfHRP2 [8,18], which may contribute
to the detection sensitivity of PfHRP2-detecting RDTs
and reduce the effect of PfHRP2 variability on RDT sensi-
tivity, particularly at high parasite densities.

The organization and the number of repeats in PfHRP2
vary extensively between parasite isolates. Theoretically,
the presence and absence, as well as the number of
repeats could affect the binding affinity of the antibodies
used in RDTs to the parasites' antigen. Indeed, this pre-
liminary analysis based on 16 cultured lines and tested on
two earlier malaria RDTs, Paracheck Pf (Orchid Biomedi-
cal Systems, India) and ICT Malaria (ICT Diagnostics,
South Africa), yielded a binary logistic regression model
that was able to predict detection sensitivity of these two
RDTs based on sequence structure [24]. However, the
number of isolates used was limited and cultured para-
sites were used. In this study, the analysis was repeated
using the recently completed WHO product testing of
malaria RDTs (Round 1) results that included the testing
of 34 PfHRP2-detecting RDTs tested against 79 isolates at
200 parasites/μl. This much larger sample size enabled
more stringent analysis. The regression analysis this time
did not show a correlation between PfHRP2 structure
and the overall RDT detection rates. This result suggests
that the performance of this group of RDTs is not greatly
affected by the diversity of PfHRP2 at parasite densities of
200 parasite/μL or above and, therefore, should increase
the confidence in the performance of the devices in vari-
ous geographic locations. However, this does not exclude
an effect of sequence diversity on RDT detection rates at

lower parasite densities, or by RDTs employing other
monoclonal antibodies.

Conclusions
PfHRP2, the most common target of malaria RDTs, is
highly polymorphic throughout the malaria-endemic
regions included in this study. While this may affect RDT
sensitivity at very low parasite densities ( < 200 parasites/
μL), it appears unlikely to have a major impact in most
endemic regions at parasite densities usually seen in clin-
ical malaria (200 parasites/μL and above). The extensive
diversity in the pfhrp2 sequence also provides evidence
that there has not been a strong evolutionary selection for
any particular type of sequence. The better understand-
ing of the structure of PfHRP2 and its variation contrib-
utes to the evaluation and testing of malaria RDTs, the
RDT quality assurance programmes and helps improve
malaria RDTs.
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