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Abstract

Background: In areas of high transmission people often harbour multiple clones of Plasmodium falciparum, but
even PCR-based diagnostic methods can only detect a fraction (the detectability, q) of all clones present in a host.
Accurate measurements of detectability are desirable since it affects estimates of multiplicity of infection,
prevalence, and frequency of breakthrough infections in clinical drug trials. Detectability can be estimated by
typing repeated samples from the same host but it has been unclear what should be the time interval between
the samples and how the data should be analysed.

Methods: A longitudinal molecular study was conducted in the Kassena-Nankana district in northern Ghana. From
each of the 80 participants, four finger prick samples were collected over a period of 8 days, and tested for
presence of different Merozoite Surface Protein (msp) 2 genotypes. Implications for estimating q were derived from
these data by comparing the fit of statistical models of serial dependence and over-dispersion.

Results: The distribution of the frequencies of detection for msp2 genotypes was close to binomial if the time
span between consecutive blood samples was at least 7 days. For shorter intervals the probabilities of detection
were positively correlated, i.e. the shorter the interval between two blood collections, the more likely the
diagnostic results matched for a particular genotype. Estimates of q were rather insensitive to the statistical model
fitted.

Conclusions: A simple algorithm based on analysing blood samples collected 7 days apart is justified for
generating robust estimates of detectability. The finding of positive correlation of detection probabilities for short
time intervals argues against imperfect detection being directly linked to the 48-hour periodicity of P. falciparum.
The results suggest that the detectability of a given parasite clone changes over time, at an unknown rate, but fast
enough to regard blood samples taken one week apart as statistically independent.

Background
In areas of high endemicity of Plasmodium falciparum,
human hosts are often superinfected with multiple
clones of the parasite [1]. Identification of these concur-
rent infections is important for understanding patterns
of drug resistance [2] and of the transmission of the
parasite. PCR-based methods for detecting parasites not
only have lower detection limits than blood smear
microscopy, but also make it possible to distinguish
genetically distinct clones, and hence to compute multi-
plicity of infection. But at least two diagnostic problems
remain: i) the same host might be infected with more
than one parasite clone of the same genotype, which
can introduce bias into estimates of multiplicity of

infection [3]. ii) PCR detection can be negative because
the sample taken does not contain any parasites. This
may happen due to effects of acquired immunity or syn-
chronization of the parasite population. Failure to
account for imperfect detection biases several standard
epidemiological measures, such as prevalence and multi-
plicity of infection. Most critically, analysis of drug fail-
ure rates using molecular typing may overlook
breakthrough parasite clones or conversely misclassify
them as new infections after treatment. Repeated blood
samples from the same host can be analysed to estimate
the probability that a clone is detected in any given
sample (the detectability, q). For microscopy data, where
individual parasite clones cannot be distinguished, the
statistical methods of [4,5] are applicable. Both assume
infections are neither acquired nor cleared during the
study. For molecular data, several pieces of work aiming
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at estimating infection duration and force of infection
also yielded measurements of detectability and its
dependence on age of the host [1,6-8]. These methods
make use of data collected over longer time periods
(several months up to a year), with surveys every 1 to 2
months, the kind of which may not be easily available in
practice. Moreover, the obtained estimates of detectabil-
ity depend on simultaneous estimates of infection and
recovery rates as well as on assumptions concerning
these processes. A simple method is therefore presented,
to estimate the detectability of infecting clones from
molecular data with short inter-survey intervals. It
makes use of pairs of surveys sufficiently close in time,
such that reinfection with the same parasite genotype
can be safely excluded. The method is similar to the one
presented in [4], but adapted for the context of molecu-
lar diagnostic methods. This implies that the maximal
number of “infections” is not limited by the number of
hosts in the study, but rather represents individual para-
site clones. The methods of [1,6-8] as well as the one
presented here assume that the detections of an infect-
ing clone at different time points are independent from
each other. While it seems reasonable to make such an
assumption, provided intervals between surveys are long
enough, it is not clear how long these intervals need to
be. Numerous publications report complicated periodic
behaviour of fevers or parasitaemia [9], or detection
events [10], which creates a need to establish the cir-
cumstances under which the methods mentioned above
can be applied.
In order to evaluate the effect of possible “nonran-

dom” behaviour of clonal infections on estimates of
detectability, a longitudinal study comprising 80 indivi-
duals was conducted in northern Ghana. From each par-
ticipant, four blood samples were collected over a period
of 8 days. Using these data, various statistical models are
compared with respect to their goodness of fit, and a
series of hypothesis tests is performed. The resulting
statistical description of the within-host dynamics of P.
falciparum clones, as observed by molecular typing
methods, allows us to justify a simple algorithm for
obtaining reasonably robust estimates of q and specify
the circumstances under which this method is
applicable.

Methods
Study site and sample collection
The present survey was conducted following a one year
longitudinal study on malaria epidemiology [7,8,11,12]
in the Kassena-Nankana district (KND), in the Upper
East Region of Ghana. The malariological situation in
this area is characterized by very high prevalence and
multiplicity of infection [11,13], and year-round trans-
mission with seasonal variation in transmission intensity

[8]. From the participants of the mentioned main study,
80 individuals below 20 years of age were randomly
selected for this followup. From these, a total of four
blood samples were taken on the last survey of the main
study as well as 1, 6 and 7 days later (Figure 1). The
present analysis was restricted to these four samples
within eight days. Study participants were visited in the
early mornings of each day and houses were visited in
the approximately the same order, to ensure sample col-
lection at roughly the same time of day for each indivi-
dual. Whole blood was collected on “ISOCode™Stix”
PCR template preparation dipsticks (Schleicher &
Schuell, Dassel, Germany). Study participants who were
sick at the time of the survey were referred to the rou-
tine health services. No anti-malarial treatments were
administered by the research team.

Genotyping
DNA was eluted from “ISOCode™Stix” filter paper and
screened for presence of P. falciparum by polymerase
chain reaction (PCR). Sample processing and PCR con-
ditions have been described in detail [14]. In brief, all
samples were subjected to PCR using primers specific
for the merozoite surface protein (msp) 2 locus. Geno-
types were distinguished on the basis of length poly-
morphism and PCR fragments were precisely sized by
automated capillary electrophoresis and GeneMapper®
software. An inhouse generated software identified all
genotypes per sample and transformed the data into dif-
ferent formats suitable for data management and statis-
tical analysis. Given the high number of msp2 genotypes
in the population, re-infection with the same genotype
was assumed to be a rare event. As a consequence of
this, for any given host, msp2 genotype is assumed to be
synonymous with “infecting clone” in all analyses.

Data analysis
Only data of those participants who were present at all
four survey rounds, and where at least one genotype
was found, were included in the analysis. This reduced
the number of individuals in the data set to 69. Patterns
of appearance and disappearance of specific parasite

Figure 1 Study design. Blood samples were collected in four
survey rounds (R1-R4), on day 1, 2, 7 and 8. The result of this study
design are two sampling intervals of 1 day, one of 5, two of 6, and
one of 7 days. A 48-hour periodicity of P. falciparum detectability
could therefore be identified, as it should show positive correlation
of detection outcomes between surveys with even-numbered
interval length, and negative correlation between surveys with odd-
numbered interval length (in days).
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genotypes depend on rates of infection and clearance as
well as on detectability. However, for the purpose of the
present analysis, acquisition and loss of infections were
neglected. It was assumed that there are no false posi-
tive results and that an infecting clone is present
throughout all four surveys if detected at least once.
This is justified by the comparatively short time interval
between the first and the last survey, and by previously
published estimates of infection and clearance rates
from the dataset of the main study [8]:
According to the authors, a person experienced an

estimated 0.6 new infections during the time of the
study (31 new infections per annum in the correspond-
ing season). This implies that around 0.6 * 69 ≈ 41 or
approximately 8% of the 519 clones in the data set may
have been acquired during the study. Similarly, assum-
ing an average (clonal) infection duration of 150 days
and that infections were acquired at random times rela-
tive to the time of the study leads to an estimate of 7/
150 ≈ 5% of clones being cleared during the study per-
iod of seven days. Failure or success to detect a strain
was denoted by 0 or 1, respectively, yielding 519 binary
sequences of length four. The 15 possible sequence
types containing at least one positive test result are
referred to by the binary number they encode (Table 1).
The resulting pool of sequences was either analysed as a
whole, or split into the following age-groups (age in
years): 0-2, 3-5, 6-10, 11-15, 16-20. This mode of analy-
sis implies that clones infecting the same host are
assumed independent of each other. Further, the present
analysis is only concerned with variation in detectability
among clones, not among hosts.

A series of c2 tests and Spearman’s rank correlation
analysis yielded qualitative information on thetemporal
behavior of detectability. Further, a series of models
for the dynamics of detectability were fit to the data
using Bayesian MCMC. These are de-scribed in detail
below. The models and their estimates of detectability
are compared using Deviance Information Criterion
(DIC) as measure of goodness of fit [15]. That only
sequences with at least one positive result were
included in the data, and therefore the data are biased,
was accounted for in all analyses. The software Win-
bugs [16] was used for all Bayesian model fitting,
whereas for all other analyses the software package R
was used [17].

Models of detection
In order to explore the short term dynamics of detect-
ability, three statistical models are compared with regard
to their goodness of fit (M1 to M3 be low). These mod-
els are in the form of an expression for the detectability
of clone i at time point t. This allows for fitting of the
models by Bayesian Markov Chain Monte Carlo
(MCMC), assuming individual detections are Bernoulli-
distributed as

X Bern qi t i t
bs

, ,~ ( ).o

In addition, a simple method of directly measuring
detectability from pairs of surveys (M0) is used. Apply-
ing this method to all available survey pairs in the data
set and comparing the estimates of q with the model
results allows us to develop criteria for the circum-
stances under which the method may be used.
M0: Direct estimation of detectability
Following [4], a method is proposed for direct estima-
tion of the detectability q from pairs of observations.
The estimate is a function of the number of infecting
clones that were detected in only one of two survey
rounds (n1), and the number which was detected in
both (n2). Assuming a binomial distribution of the num-
ber of times a clone is detected and correcting for the
detection bias leads to the following expression for the
estimated detectability q

∧ so given by

q
n

n n

∧

=
+
2 2
1 2 2
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The binomial likelihood model implies statistical inde-
pendence of detections at different time points. This
assumption might be violated if detectability exhibits
temporally structured behavior. The detectability model
underlying this method is identical to M1 below, but
this method only uses two observations, and model fit-
ting in order to estimate q is done analytically.

Table 1 Data coding

R1 R2 R3 R4 sequence no. count

0 0 0 0 0 -

0 0 0 1 1 43

0 0 1 0 2 42

0 0 1 1 3 26

0 1 0 0 4 54

0 1 0 1 5 10

0 1 1 0 6 13

0 1 1 1 7 19

1 0 0 0 8 28

1 0 0 1 9 21

1 0 1 0 10 41

1 0 1 1 11 34

1 1 0 0 12 64

1 1 0 1 13 22

1 1 1 0 14 41

1 1 1 1 15 61

Failure or success to detect a clone at any given survey round was coded
using binary notation. This yielded 519 sequences of length four. Sequences
were numbered according to the binary value they encode. Sequence no. 0 is
invisible.
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This simple method is compared to models M1 to M3
(below) in order to justify it’s use, and to establish the
conditions where it can be applied. For a formal deriva-
tion of (1) and confidence intervals for q

∧ please refer to
the appendix (additional file 1).
M1: Binomial model
Model 1 follows M0 in assuming that the detectability
qi,t is a constant for all clones i and time points t,
namely

q qi t, .=

This implies independence of detecting a clone at time
t from whether it was detected at other time points, and
homogeneity of the infection population with respect to
detectability.
M2: Beta-binomial model
Model 2 allows for variation in detectability among
clones, but requires every clone to have the same detect-
ability throughout the study. Variation in detectability is
modeled using a beta distribution:

q q Beta a bi t i, ~ ( , ),=

where a and b are the shape parameters of the beta
distribution.
M3: First order Markov Chain
Model 3 uses a two-state, first order Markov chain to
represent the time evolution of detectability. In a first
order Markov chain, the probability of detecting a clone
at time t depends on whether it was detected at time t-
1. This is achieved by defining qi,t as one of two detect-
abilities q1 or q0, depending on whether the clone i was
detected at time t - 1, or not.

q
q t

qi t,
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This is equivalent to a two-state Markov chain defined
by the transition matrix
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where ti,j is the probability that a transition from state
i to state j occurs in the data, when the two observa-
tions are one time unit apart (24 h in this case). If the
two observations are n days apart, the the transition
matrix is raised to the power of n and becomes

T Tn
n= .

The probability of detecting a clone at the first survey,
qi ,1, was assumed to be equal to the expected

detectability q , which follows from the stationary distri-
bution of the Markov chain defined by T. In equili-
brium, the the number of transitions from 0 to 1 and
from 1 to 0, respectively, must be equal. Therefore
qt q t10 011= −( ) , which leads to the expression for q
as given by

q t
t t

q
q q

= =
+ + −
01

01 10
0

1 0 1
.

An important feature of this simple model is that it
not only represents a random walk in “detection space”
(i.e. switching between being detected and not being
detected), but that it can also be interpreted as a ran-
dom walk in “detectability space” (switching between
the two detectabilites). This can be illustrated as follows:
The probability that a clone changes its internal state
from q0 to q1 is equal to the probability that it is
detected while being in state q0, which is equal to q0.
Likewise, the probability of a transition from q1 to q0 is
1 - q1. The resulting transition matrix for such a process
is identical to T. However, since this model is fitted to a
population of sequences, as opposed to just fitting it to
one single time-series, one has to be careful in interpret-
ing a possible best fit of this model: simple heterogene-
ity in detectability among clonal infections would also
result in different estimates for q1 and q0, even if there
is no random walk in detectability within a single clone.
Therefore, only in combination with the results of M2,
which is also able to capture such heterogeneity, is one
able to interpret t10 and t01 as transition probabilities
between q0 and q1.

Bias correction of detectability estimates
An “observed” detectability estimated by fitting these
models does not correspond to the underlying “true”
detectability because clones only appear in the data if
detected at least once. Therefore, a bias correction is
required in order to estimate the true detectability qtrue.
This was achieved as follows: by considering only the
(time independent) mean detectability q E qobs

i t
obs= [ ], , the

corresponding mean true detectability qtrue is approxi-
mated by qobs times the probability that a clone is
included in the data, so given by

q q qtrue obs true≈ − −( ( ) ).1 1 4

This expression can be solved numerically by starting
with the approximation

q q qtrue obs obs≈ − −( ( ) ),1 1 4

and iteratively approaching qtrue. The magnitude of
the bias in detectability estimates can thus be examined
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numerically. It amounts to approximately 10-2 for the
values of q in the present data. The approach was used
in all models to correct the measured detectabilities for
detection bias. Similarly, the true number of clones
present, Ntrue, is approximated as

N
Nobs
qtrue

true ≈
− −( ( ) )

,
1 1 4

with Nobs = 519.

Results
In the complete study population (80 individuals), the
average prevalence across all four survey rounds was
46% by microscopy and 0.69% by PCR. The dataset used
for statistical analyses comprised 69 parasite-positive
individuals between 6 months and 20 years of age, with
a median age of 5.2 years (interquartile range 3.5-9.7).
The median multiplicity of infection (MOI) among these
was 10 (inter-quartile range 7-13), when pooling all four
observations from each individual. This differs from
standard practice when reporting MOI, but was justified
given the very short interval between the surveys. The
obtained value is expected to be a better estimate of the
true MOI. When only considering single survey rounds,
the median MOI among PCR-positives was 4. The 519
detected clones belonged to 77 different msp2 geno-
types, with the most common allele reaching a fre-
quency of 9.2%.

Tests of proportion and correlation
A series of hypothesis tests was performed in order to
gain insight into the statistical properties of the data-
generating process. These do not relate to the models
M1-M3 directly, but rather aim to look at similar ques-
tions using a completely different methodology. Any
conclusions would need to be consistent with both
approaches. In this analysis, the detection bias is
accounted for by adding a total of 26 all-zero sequences
to the data set, such that the total number of sequences
equals 545. This is the “true” number of clonal infec-
tions, as estimated robustly by models M1 to M3. In the
following list, H1-H5 indicate the hypotheses tested, and
the corresponding p-values obtained using c2 tests (with
the exception of the Spearman’s Rank Correlation analy-
sis) are given:
H1: All 4 surveys have an equal proportion of positive

results, i.e. ∑ ∑ ∑ ∑= = =d d d di i i i, , , ,1 2 3 4 (Data:
312, 284, 277, 236). This hypothesis of stationarity is
rejected by a c2 test with 3 degrees of freedom: P-value
< 0.0001.
H2: The frequencies si of the 16 binary sequences

(including the added all-zero sequence) are multinomi-
ally distributed with expectations s q qi

oi i= − −545 1 4 0( ) ,

where oi is the number of positive testing results in
sequence i). This hypothesis, effectively proposing that a
Bernoulli-process is able to perfectly describe the data,
is rejected by a c2 test with 14 degrees of freedom: P-
Value < 0.0001.
H3: The number of sequences with i = 0, 1, .., 4 detec-

tions are multinomially distributed with expectations
s q qi

o
i

i i= − −545 14 4( ) ( ) .0
0 This is a slightly relaxed ver-

sion of H2, such that the time order of detections is
neglected, and sequences with a certain number of
detections are pooled. However, this hypothesis is
rejected by a c2 test with 3 degrees of freedom: P-Value
< 0.0001.
H4: The frequencies of all four possible results of a

survey pair (i.e. “00”,"01”,"10” and “11”) are multinomi-
ally distributed with expectations s q qi

oi i= − −545 1 2( ) .0

This is a special case of H2, only applied to a pair of
surveys, instead of the whole dataset. Except for survey
pair 2-3 (p-value 0.06) this hypothesis is rejected on all
survey pairs by c2 tests with 2 degrees of freedom: P-
values < 0.0001.
H5: The distribution of the number of successful

detections in pairs of surveys is binomially distributed.
This is very similar to H3, except that only pairs of sur-
veys are considered. The duration between the observa-
tions turns out to be important, as the hypothesis is
rejected by c2 tests with 1 degree of freedom on all sur-
vey pairs (p-value < 0.0001), except on the longest inter-
val with a duration of 7 days (p-value: 0.83). The p-
values of all pairs are listed in Table 2. This result is
particularly interesting as it could be interpreted as test
of an ergodic hypothesis, which implies that after
enough time has passed, the system “forgets” where it
started and its state at the second observation is inde-
pendent from the first observation.
A Spearman’s Rank Correlation analysis showed sig-

nificant positive correlation between all pairs of surveys
which are 24 h apart, and no correlation for all other
pairs, with the exception of the pair formed of surveys 1
and 3.

Table 2 Direct estimation of q on all survey pairs, using
M0

survey pair interval (days) n1 n2 q\and 95% CI p-value

1-2 1 220 188 0.63 0.59-0.68 9.4e-12

3-4 1 233 140 0.55 0.49-0.60 9.1e-7

2-3 4 293 134 0.48 0.43-0.53 1.1e-2

1-3 5 235 177 0.60 0.55-0.65 2.4e-7

2-4 5 276 112 0.45 0.39-0.50 1.7e-3

1-4 7 272 138 0.50 0.45-0.55 0.83

Direct estimation of q on all pairs of surveys gave heterogeneous results.
However, only in pair 1-4 are the proportions of single and double positives
compatible with the binomial assumption of the direct estimation method (p-
value:0.83). The estimate of q from this pair is close to the estimate of M3.
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Model comparison
A comparison of models M1 to M3 with respect to their
goodness of fit as indicated by lower values of DIC reveals
that M3 fits the data best (Table 3). This was the case
both when splitting the data by age group (DIC 2860.0)
and without doing so (DIC 2856.4). The model estimating
a separate parameter set for each age group indicates a
decreasing trend in detectability with age, as observed by
others [1,8,18]. However, the model with only one para-
meter set for all ages has a lower value of DIC, and there-
fore this trend is not significant. There is almost no
difference in goodness of fit between the binomial (M1)
and beta binomial models (M2), as indicated by the corre-
sponding DIC values (all between 2870.2 and 2872.3). This
is in line with the finding that the beta-binomial models
estimated almost no variation in q and therefore effectively
reduced to the corresponding binomial model. A graphical
comparison of M1 and M3 is presented in Figure 2.

Estimates of q
The estimates of detectability (Table 3) were found to
be similar for models M1 through M3, especially when

common parameters for all age groups were estimated.
All values were approximately 0.5, and showed little
prior sensitivity. Although measuring separate detect-
abilities for every age group did not improve model fit,
a decreasing trend of detectability with age was
observed. Estimates of q for the youngest group are
between 0.51 and 0.55, and decrease to values between
0.41 an 0.46 for the oldest age group. This is consistent
with the findings of other authors [8]. Estimates of q
obtained using M0, however, show some variation, with
values ranging from 0.45 to 0.63. Table 2 shows the cor-
responding estimates obtained from all available pairs of
surveys. Only for the measurement using survey pair 1-
4 were the criteria for using the method fulfilled, as the
corresponding p-value of 0.83 indicates, and the value of
q estimated from this pair matches the estimates from
the models very well.

Discussion
The short term dynamics of asymptomatic P. falciparum
clonal infections in vivo were characterized in order to
find a simple way of measuring detectability in the field.

Table 3 Comparison of Models M1-M3

model age groups q¯ DIC

M1 (binomial) 1 0.50 2870.2

M1 (binomial) 5 0.55, 0.52, 0.49, 0.53, 0.41 2872.3

model Age groups q¯ var(q) DIC

M2 (beta-bin.) 1 0.51 0.003 2871.5

M2 (beta-bin.) 5 0.51, 0.46, 0.46, 0.47, 0.46 0.004,0.005,0.005,0.005,0.005 2871.3

Model age groups q¯ q0 q1 DIC

M3 (Markov) 1 0.50 0.47 0.59 2856.4

M3 (Markov) 5 0.55, 0.53,0.49, 0.53, 0.41 0.45, 0.44, 0.47, 0.56, 0.46 0.65, 0.64, 0.56, 0.55, 0.45 2860.0

Model results: M3 without age groups fitted the data best, indicated by it’s lowest value of DIC. M2 effectively reduced to M1, as it estimated very low variance
of detectability. All models estimated a true number of clones of approx. 546 (not shown), and similar values for the mean detectability q¯ Values of q¯ represent
the bias-corrected mean detectability, whereas q0 and q1 are not bias corrected, but represent “observed” detectabilities (see section “bias correction”).

Figure 2 Expected and actual frequencies of sequence types. Comparison of sequence type frequencies in the data with their expectations
from a) the binomial model (M1), and b) the Markov Chain model (M3). M3 fitted the data better, yet did not fully explain it. The beta-binomial
model (M2) is not shown since it measured almost no variation in detectability among clones, and therefore effectively reduced to M1.
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A series of statistical tests as well as a progression
through three simple models provided insight into some
statistical properties of within-host dynamics monitored
by molecular typing. Classical PCR ignores absolute
parasite densities, but length polymorphic amplicons
make it possible to distinguish between co-infecting
parasite clones. Detectability, however, can be used as a
proxy for parasite densities, as the two must be corre-
lated. Since key epidemiological measures such as preva-
lence and multiplicity of infection (MOI) depend on the
numerical value of detectability, planning and monitor-
ing of malaria interventions rely on accurate measure-
ments of detectability. It is important to note that
detectability may not only depend on host or parasite
factors, but also on the methods for generation of geno-
typing data. These include the method for collecting
blood samples, the actual volumes of blood collected,
storage conditions, PCR conditions, and competition
within the PCR assay limiting the detection of minority
clones. The present analysis did not consider any of
these factors, but rather assumed that their impact is
more or less identical for all samples and clones.

Within-host dynamics
Measurement of detectability from longitudinal data will
for practical reasons rely on binomial models of detec-
tion. This creates a need to establish under what condi-
tions such binomial models are applicable. Different
hypotheses tested on the typing data showed compli-
cated dynamics of clonal infections for short timescales.
These dynamics could not be described by a binomial
model (rejection of hypotheses H1 to H3). A hypothesis
which could not always be rejected was H5. This
hypothesis stated that the number of successful detec-
tions in sample pairs were binomially distributed. It was
not rejected for the sample pair collected at the most
distant dates, i.e. from surveys 1 and 4 with interval of 7
days (Table 2). This finding could indicate that the pro-
cesses governing detectability on short time scales are
prone to stochastic variation such that the effect of the
initial state of a clone vanishes after some time, and the
two observations become independent. In other words,
the corresponding test could be interpreted as test of an
ergodic hypothesis, which implies that the system under
investigation “forgets” it’s initial state after enough time
has passed. That the frequencies of “01” and “10”
sequences are not equal, and therefore H4 (stricter than
H5) is rejected on all survey pairs except pair 2-3, ques-
tions this interpretation, and can not be explained it in
a satisfactory way. Since there are consistently more
“10” pairs than ‘01”, one could presume that the detect-
ability of clones simply decreases with time, which
would also explain the decreasing trend in the number
of detections per survey (H1). However, this is mere

speculation and can hardly be shown from this dataset.
Nevertheless, the method of directly measuring detect-
ability is presumably little affected by this phenomenon,
as it’s estimates of q only depend on the sum of single
positive pairs and the obtained numerical values of q
agree very well with the results of the other models.
Intuitively, one would expect a certain amount of var-

iation in detectability among clonal infections, especially
since these were pooled across individuals. It is therefore
surprising that M2, which would allow for such varia-
tion, measured zero variance of q and effectively
reduced to the binomial model M1. The best fitting
model M3 offers a possible interpretation, as it is cap-
able of capturing change in detectability over time. M3
models the time evolution of detectability as a Markov
chain, which is equivalent to assume that a clone has
detectability q0 if it was not detected on the preceding
survey, and detectability q1 if it was. The obtained esti-
mates of q0 and q1 as 0.47 and 0.59, respectively, could
either indicate variation in the dataset with respect to
detectability or that the detectability of a clone performs
a random walk in detectability space, alternating
between the two states q0 and q1. Since M2 reduced to
M1, and estimated practically no variation in detectabil-
ity, we have to assume the latter.
One might expect parasite densities to fluctuate with a

period of approximately 48 hours, as observed in malar-
iatherapy-data [9], and in good agreement with in-vitro
measurements of a 48 hour erythrocytic cycle. In fact,
such periodic behaviour of asymptomatic infections has
been reported [10,19]. The present analysis does not
find a 48-hour periodicity, rather the opposite: both the
best fitting model as well as the results of the Spear-
man’s rank correlation analysis indicate positive autocor-
relation between time points which are 24 hours apart.
A process with a periodicity of 48 hours, on the con-
trary, should show negative correlation. A possible
explanation for the difference between malariatherapy
data and the data presented here could be that malar-
iatherapy patients were not immune and therefore had
fever more often. The question of periodicity in sympto-
matic malaria should be considered separately, and it’s
causes are thought to be well explained [20,21]: high
temperature (fever) differentially affects the intra-ery-
throcytic stages of parasite development, and nearly
stops development in some of these. This leads to
“queuing” of the parasite population, and when the fever
goes down, all parasites continue their development in a
synchronized way. Fever can by definition not be operat-
ing in asymptomatic individuals, but at least in simian
and avian malaria an effect of normal diurnal changes in
body temperature on synchronization has been demon-
strated, alongside with the observation that sometimes
the parasite population is split into “two broods [..],

Bretscher et al. Malaria Journal 2010, 9:234
http://www.malariajournal.com/content/9/1/234

Page 7 of 10



coming to schizogony on alternate days” [22]. Two
broods, synchronized within themselves, appearing in
the peripheral blood with a 48 hour periodicity, yet with
a 24 hour phase-shift, would appear in the data as hav-
ing a 24 hour periodicity. This would be consistent with
the finding that detection results one day apart are posi-
tively correlated. As the data does not contain smaller
time intervals, however, any such periodicity cannot be
distinguished from a simple gradual change in
detectability.
Analysis of periodicity of clonal infections would ide-

ally make use of long series of parasitological observa-
tions of untreated infections with short intervals, but
few studies have collected such data, partly for ethical
reasons. Exceptions include the malariatherapy datasets
[23], the studies of Farnert et al [10,24] and Magesa et
al [25] in Tanzania, and Bruce et al [19,26] from Papua
New Guinea. Bruce et al aggregated data for paired
observations with identical interval length and calculated
the probability of detecting an infection at the second
occasion, conditional on it being detected at the first
occasion. This analysis suggests values of detectability
similar to the estimates in the present study, with a six
day periodicity. This periodicity was interpreted as signal
of a 48-hour underlying cycle because the sampling
interval was three days, which meant that six-day and
two-day periodicity could not be distinguished. Similar
analyses of the other available datasets would be of
value.

Measurement of detectability
A comparison of different approaches for estimating
detectability found remarkably good agreement of the
obtained numerical values. Of practical interest is the
use of a direct method of estimating the detectability q
from pairs of surveys by using the number of clones
which were detected once (n1), or twice (n2):

q
n

n n
≈

+
2 2
1 2 2

.

This approach was found to give very similar results
as the more sophisticated methods, provided the under-
lying assumption is met: the number of successful detec-
tions must follow a binomial distribution. The statistical
properties of the data, as assessed by a series of tests,
suggest that if there is an interval of at least 7 days
between consecutive surveys, it is safe to make these
assumptions (see H5). Alternative methods [1,6-8] rely
on the same two assumptions, yet are further incorpor-
ating models for the processes of acquisition and loss of
infections. While those may themselves be of interest,
the associated measurements of q may be affected by
assumptions about acquisition and loss of infections.

Direct estimation using M0 is therefore recommended
as a simple and practical alternative, if only detectability
is of interest, and if the interval between two surveys is
short enough so acquisition and loss of infection clones
can safely be excluded.

Epidemiological significance of detectability
Prevalence and multiplicity of infection (MOI) are key
epidemiological parameters, which characterize the
malariological situation in a given area, and are routinely
being reported. Quantities like these are ultimately
important for rational planning of interventions. Both
mentioned quantities are, however, affected by the value
of detectability, which in comparison receives little
attention. It seems plausible, that on average the “true”
MOI should be the “observed” MOI divided by the
detectability, which implies - given values of q around
0.5 - that true MOI’s are roughly double of what is
being reported. However, this ignores, that detectability
itself might depend on MOI, and is merely an approxi-
mation. What about estimates of prevalence? It seems
plausible that the extent to which measurements of pre-
valence are influenced by the value of q should vary
with the multiplicity of infection, as the probability to
miss every single one of n clones in a host (and obtain a
false negative result) could be stated as (1 - q)n (Figure
3).
This implies that the measurement error for preva-

lence, when neglecting detectability, should be highest
at the lowest multiplicities of infection - a situation to
be expected when approaching local elimination. It is
therefore desirable to routinely report q together with
other epidemiological measures, if possible.
In drug efficacy trials, the phenomenon of imperfect

detection complicates the task of distinguishing new
from breakthrough infections, and therefore must have
an influence on drug efficacy estimates. In addition, resi-
dual drug levels may keep parasite densities at undetect-
able levels for some time, which is usually taken into
account when designing drug efficacy trials. No satisfac-
tory statistical methodology for analysis of such trials
appears to exist, taking into account both imperfect
detection and residual drug levels. It is suspected that
many recrudescent infections, i.e. infection clones which
survive treatment and are detected several days or
weeks later, might in fact often be detected earlier if
multiple testing took place. This is strongly supported
by the findings of [27], who note that consecutive-day
blood sampling changes the results of a drug efficacy
trial compared to single-day blood sampling.

Conclusions
The presented work demonstrates the importance of
paying attention to the phenomenon of imperfect
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detection not only in the sense of assessing the sensitiv-
ity of diagnostic tests, but also looking at it as a prop-
erty of infections or individuals. Various epidemiological
measures, such as prevalence or MOI, are affected by
imperfect detection. Failure to account for it may
severely distort the outcome of measurements and may
even lead to wrong conclusions. As an example, the
decrease in prevalence with age, as it is frequently
observed in malaria, might actually mean that detect-
ability decreases with age, while prevalence remains con-
stant or even increases. Indeed, some publications
suggest that this might be the case [8]. In addition, it is
likely that underestimation of prevalence may be sub-
stantial in situations where the multiplicity of infection
is low. This is because the chance of missing every sin-
gle clone in a host is highest when there are only few.
A simple method of estimating detectability from

molecular data, using pairs of surveys, was presented. It
is a modification of existing methods, which can deal
with data on multiple infections within one host. The
numerical estimates of detectability obtained using said
formula appeared remarkably robust. Through compari-
son of the detectability estimates with estimates from
different models, and through a series of statistical tests,
the conditions under which the underlying assumptions
of the method are fulfilled could be established. Its use
is recommended when the time interval between the

two surveys is one week or more, but discouraged on
data with shorter time intervals, if possible. Both the
method itself as well as the way of addressing it’s applic-
ability are not restricted to malaria, but may in a similar
way be used for other infectious diseases where molecu-
lar data on individual clones is available.
The restrictions on applicability stem from the com-

plicated dynamics of detectability on short time scales.
These were investigated and it was found that treating
individual detections as statistically independent is only
an acceptable approximation for time intervals longer
than one week. Contrary to expectation, however, no
changes in detectability indicative of a 48 hour cycle
were found, as is reported from malariatherapy data.
This suggests that not the 48 hour erythrocytic cycle of
P. falciparum is dominating detectability in vivo, but
that other factors, such as e.g. the dynamics of the
immune system, may be important. As the participants
of the study must be considered partly immune, it is
presumed that the within-host dynamics of infections
differ between immune and non-immune individuals.
This questions the use of malariatherapy data for fitting
of within-host models for the immune host, and
encourages further collection of relevant data as well as
development of analysis methods in order to gain better
insight into the within-host dynamics of P. falciparum
in immune individuals.

Figure 3 The error in prevalence measurements becomes more important at low MOI. a) Prevalence estimates are biased due to
imperfect detection. Assuming that infecting clones within a particular host are independent from each other, the probability of missing all of
them and therefore falsely classify an individual as negative, is highest for low multiplicity of infection. This graph shows - for different values of
q - how the number of clonal infections in a host affects the estimates of prevalence. The probability of correctly recognizing a positive
individual with n infections is calculated as 1 - (1 - q)n. It follows that the effect of detectability on prevalence estimates is highest at low
multiplicity of infection and therefore low transmission, for example when being close to local elimination. However, low transmission intensity
might prevent acquisition of immunity and therefore raise the value of detectability. It is therefore desirable to report estimates of q and
multiplicity of infection together with prevalence estimates. b) The distribution of MOI. Contrary to common practice, observations from all four
surveys are pooled for the calculation of MOI. This corresponds to the assumption that clones are present throughout all surveys if detected
once. With the help of figure 3.a, the bias on prevalence estimates in this population, as introduced by imperfect detection, can be roughly
estimated.
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Additional material

Additional file 1: Appendix: estimating detectability using survey
pairs. This file contains a formal derivation of the mathematical
expression used for direct estimation of detectability (M0).
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