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METHODOLOGY

Bias in logistic regression due 
to imperfect diagnostic test results  
and practical correction approaches
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Abstract 

Background:  Logistic regression is a statistical model widely used in cross-sectional and cohort studies to identify 
and quantify the effects of potential disease risk factors. However, the impact of imperfect tests on adjusted odds 
ratios (and thus on the identification of risk factors) is under-appreciated. The purpose of this article is to draw atten-
tion to the problem associated with modelling imperfect diagnostic tests, and propose simple Bayesian models to 
adequately address this issue.

Methods:  A systematic literature review was conducted to determine the proportion of malaria studies that appro-
priately accounted for false-negatives/false-positives in a logistic regression setting. Inference from the standard 
logistic regression was also compared with that from three proposed Bayesian models using simulations and malaria 
data from the western Brazilian Amazon.

Results:  A systematic literature review suggests that malaria epidemiologists are largely unaware of the problem of 
using logistic regression to model imperfect diagnostic test results. Simulation results reveal that statistical inference 
can be substantially improved when using the proposed Bayesian models versus the standard logistic regression. 
Finally, analysis of original malaria data with one of the proposed Bayesian models reveals that microscopy sensitivity 
is strongly influenced by how long people have lived in the study region, and an important risk factor (i.e., participa-
tion in forest extractivism) is identified that would have been missed by standard logistic regression.

Conclusion:  Given the numerous diagnostic methods employed by malaria researchers and the ubiquitous use of 
logistic regression to model the results of these diagnostic tests, this paper provides critical guidelines to improve 
data analysis practice in the presence of misclassification error. Easy-to-use code that can be readily adapted to Win-
BUGS is provided, enabling straightforward implementation of the proposed Bayesian models.
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Diagnostic test

© 2015 Valle et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Epidemiologists use logistic regression to identify risk factors 
(or protective factors) based on binary outcomes from diag-
nostic tests. As a consequence, this statistical model is used 
ubiquitously in studies conducted around the world, encom-
passing a wide range of diseases. One issue with this tool, 
however, is that it fails to account for imperfect diagnostic 

test results (i.e., misclassification errors). In other words, 
depending on the diagnostic method employed, a nega-
tive test might be incorrectly interpreted as lack of infection 
(i.e., false-negative) [1–3] and/or a positive test result might 
be incorrectly interpreted as infection presence (i.e., false-
positive) [3–8]. This is particularly relevant for malaria given 
the numerous diagnostic techniques that are commonly 
employed [e.g., rapid diagnostic tests (RDTs), fever, anaemia, 
microscopy, and polymerase chain reaction (PCR)].

Imperfect detection has important implications. For 
instance, the determination of infection prevalence (i.e., 
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the proportion of infected individuals) will be biased if 
detection errors are ignored [9–11]. However, it is typically 
under-appreciated that errors in detection may also influ-
ence the identification of risk factors and estimates of their 
effect. An important study by Neuhaus [12] demonstrated 
that as long as covariates do not influence sensitivity and/
or specificity (e.g., non-differential outcome misclassifi-
cation), then imperfect detection is expected to result in 
adjusted odds ratios that are artificially closer to zero and 
underestimation of uncertainty in parameter estimates 
(see also [13]). However, when sensitivity and specificity 
are influenced by covariates, the direction of the bias in 
parameter estimates is difficult to predict [12, 14].

Several methods have been proposed in the litera-
ture to adjust for misclassification of outcomes, includ-
ing an expectation–maximization (EM) algorithm [15], 
the explicit acknowledgement of misclassification in 
the specification of the likelihood, enabling users to fit 
the model using SAS code [16], probabilistic sensitiv-
ity analysis [17] and Bayesian approaches [18]. Unfortu-
nately, these methods have not been widely adopted by 
the malaria epidemiology community, likely because 
these problems are rarely acknowledged outside biosta-
tistics and statistically inclined epidemiologists. Lack of 
awareness is particularly problematic because several 
of the proposed modelling approaches that address this 
problem work best if an ‘internal validation sample’ is 
collected alongside the main data.

This article begins with a brief literature review to dem-
onstrate how malaria epidemiologists are generally una-
ware of the problem associated with, and the proposed 
methods to deal with, misclassification error. Then, dif-
ferent types of auxiliary data and the associated statisti-
cal models that can be used to appropriately address this 
problem are described and straightforward code is pro-
vided to readily implement these models. Finally, perfor-
mance of these models is illustrated using simulations 
and a case study on malaria in a rural settlement of the 
western Brazilian Amazon.

Methods
Systematic literature review
To provide support for the claim that malaria epidemi-
ologists generally do not modify their logistic regres-
sions to account for imperfect diagnostic test outcomes, 
a targeted literature review was conducted. PubMed 
was searched using different combinations of the search 
terms ‘malaria’, ‘logistic’, ‘models’, ‘regression’, ‘diagno-
sis’, and ‘diagnostic’. The search was restricted to studies 
published between January 2005 and April 2015. Of the 
209 search results, 173 articles were excluded because 
they included authors from this article, were unrelated 
to malaria, malarial status was either unreported or not 

the outcome variable in the logistic regression, and/or 
they relied solely on microscopy. Studies that relied only 
on microscopy were excluded because this diagnostic 
method is considered the gold standard in much of the 
world, with the important exception of locations with rel-
atively low transmission (e.g., Latin America), where PCR 
is typically considered to be the gold standard method. 
Detailed information regarding the literature review (e.g., 
list of articles with the associated reasons for exclusion) is 
available upon request.

Statistical models and auxiliary data to address 
misclassification error
To avoid the problem associated with imperfect detection 
when using logistic regression, one obvious solution is to 
use a highly sensitive and specific diagnostic test (e.g., the 
gold standard method) to determine disease status for all 
individuals. Unfortunately, this is often unfeasible and/
or not scalable because of cost or other method require-
ments (e.g., electricity, laboratory equipment, expertise 
availability, or time required). Alternatively, statistical 
methods that specifically address the problem of imper-
fect detection (i.e., misclassification) can be adopted. 
Unfortunately, these statistical models contain parame-
ters that cannot be estimated from data collected in regu-
lar cross-sectional surveys or cohort studies based on a 
single diagnostic test. Therefore, these statistical methods 
are described in detail along with the additional data that 
are required to fit them.

For all models, JAGS code is provided for readers inter-
ested in implementing and potentially modifying these 
models (see Additional Files 1, 2, 3, and 4 for details). 
Readers should have no problem adapting the same code 
to WinBUGS/OpenBUGS, if desired. The benefit of using 
Bayesian models is that they can be readily extended to 
account for additional complexities (e.g., random effects 
to account for sampling design). As a result, the code 
provided here is useful not only for users interested in 
this paper’s Bayesian models but also as a stepping stone 
for more advanced models.

Bayesian model 1
One option is to use results from an external study on 
the sensitivity and specificity of the diagnostic method 
employed. Say that this external study employed the 
same diagnostic method, together with the gold standard 
method, and reported the estimated sensitivity ŜN  and 
specificity ŜP. This information can be used to properly 
account for imperfect detection. More specifically, Bayes-
ian model 1 assumes that

Ii ∼ Bernoulli

(
exp(β0 + β1xi1 + β2xi2 + · · ·)

1+ exp(β0 + β1xi1 + β2xi2 + · · ·)

)



Page 3 of 9Valle et al. Malar J  (2015) 14:434 

where Ii is the infection status of the ith individual, 
β0,β1,β2, . . . are regression parameters, and xi1, xi2, . . . 
are covariates. It further assumes that:

where Di is the regular diagnostic test result for the ith 
individual. Finally, different priors can be assigned for the 
disease regression parameters. A fairly standard unin-
formative prior is adopted for these parameters, given by:

One problem with this approach, however, is that it 
assumes that these diagnostic test parameters are exactly 
equal to their estimates ŜN  and ŜP. A better approach 
would account for uncertainty around these estimates of 
sensitivity and specificity, as described in Bayesian model 
2.

Bayesian model 2
This model is very similar to Bayesian model 1, except 
that it employs informative priors for sensitivity SN and 
specificity SP. One way to create these priors is to use the 
following information from the external study:

• • N+ number of infected individuals, as assessed using 
the gold standard method;

• • T+ number of individuals detected to be infected by 
the regular diagnostic method among all N+ individ-
uals;

• • N− number of healthy individuals, as assessed using 
the gold standard method; and

• • T− number of individuals not detected to be infected 
by the regular diagnostic method among all N− indi-
viduals.

Following the ideas in [19, 20], these ‘data’ can be used 
to devise informative priors of the form:

There are other ways of creating informative priors for 
SN and SP that do not rely on these four numbers (i.e., 
T−,T+,N−,N+) (e.g., based on estimates of SN and SP 
with confidence intervals from a meta-analysis) but the 
method proposed above is likely to be broadly applica-
ble given the abundance of studies that report these four 
numbers.

Two potential problems arise when using external data 
to estimate SN and SP. First, results from the external 

Di ∼ Bernoulli(ŜN ) if Ii = 1

Di ∼ Bernoulli
(
1− ŜP

)
if Ii = 0

βj ∼ N (0, 10).

SN ∼ Beta(T+ + 1,N+ − T+ + 1)

SP ∼ Beta(T− + 1,N− − T− + 1).

study are assumed to aptly apply to the study in ques-
tion (i.e., ‘transportability’ assumption), which may not 
necessarily be the case if diagnostic procedures and stor-
age conditions of diagnostic tests are substantially differ-
ent. Second, the performance of the diagnostic test may 
depend on covariates (i.e., differential misclassification) 
[16]. For instance, microscopy performance for malaria 
strongly depends on parasite density [21]. If age is an 
important determinant of parasite density in malaria (i.e., 
older individuals are more likely to display lower para-
sitaemia), then microscopy sensitivity might be higher 
for younger children than for older children or adults. 
Another example refers to diagnostic methods that rely 
on the detection of antibodies. For these methods, sen-
sitivity might be lower for people with compromised 
immune systems (e.g., malnourished children). In these 
cases, adopting a single value of SN and SP in Bayesian 
model 1 or 2 might be overly simplistic and may lead to 
even greater biases in parameter estimates. Bayesian 
model 3 solves these two problems associated with using 
external data.

Bayesian model 3
Instead of relying on external sources of information, 
another alternative is to collect additional information 
on the study participants themselves (also known as an 
internal validation sample [16]). More specifically, due to 
its higher cost, one might choose to diagnose only a small 
sub-set of individuals using the gold standard method. 
This sample enables the estimation of SN and SP of the 
regular diagnostic test (and potentially reveals how these 
test performance characteristics are impacted by covari-
ates) without requiring the ‘transportability’ assumption 
associated with using external data.

In Bayesian model 3, the gold standard method is 
assumed to be employed concurrently with the regu-
lar diagnostic method for a randomly chosen sub-set of 
individuals. Its structure closely follows that of Bayesian 
models 1 and 2, except that now sensitivity and specific-
ity are allowed to vary according to covariates:

where additional regression parameters (α0,α1,α2, . . . 
and ω0,ω1,ω2, . . .) determine how sensitivity and speci-
ficity, respectively, vary from individual to individual as 
a function of the observed covariates. Notice that the 
covariates in these sensitivity and specificity sub-models 

Di ∼ Bernoulli

(
SNi =

exp(α0 + α1xi1 + α2xi2 + · · ·)

1+ exp(α0 + α1xi1 + α2xi2 + · · ·)

)

if Ii = 1

Di ∼ Bernoulli

(
1− SPi =

1

1+ exp(ω0 + ω1xi1 + ω2xi2 + · · ·)

)

if Ii = 0
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do not need to be the same as those used to model infec-
tion status Ii. Also notice that it is only feasible to esti-
mate all these regression parameters because of the 
assumption that infection status Ii is known for a sub-
set of individuals tested with the gold standard method. 
More specifically, it is assumed that Ii = Gi for these 
individuals, where Gi is the result from the gold standard 
method. A summary of the different types of data dis-
cussed above and the corresponding statistical models is 
provided in Table 1.

Simulations
The effectiveness of the proposed Bayesian models in 
estimating the regression parameters was assessed using 
simulations. One hundred datasets were created for each 
combination of sensitivity (SN =  0.6 or SN =  0.9) and 
specificity (SP = 0.9 or SP = 0.98). Sensitivity and speci-
ficity values were chosen to encompass a wide spectrum 
of performance characteristics of diagnostic methods. 
Furthermore, it is assumed that sensitivity and specificity 
do not change as a function of covariates. Each dataset 
consisted of diagnostic test results for 2000 individuals, 
with four covariates standardized to have mean zero and 
standard deviation of one. In these simulations, infection 
prevalence when covariates were zero (i.e., exp (β0)

1+exp (β0)
) was 

randomly chosen to vary between 0.2 and 0.6 and slope 
parameters were randomly drawn from a uniform distri-
bution between −2 and 2.

For each simulated dataset, the true slope parameters 
were estimated by fitting a standard logistic regres-
sion (‘Std.Log.’) and the Bayesian models described 
above. For the methods that relied on external study 
results, it was assumed that N− = N+ = 100 and that 
T+ ∼ Binomial(N+, SN ) and T− ∼ Binomial(N−, SP). 
Therefore, the assumption for Bayesian model 1 (‘Bayes 
1’) was that sensitivity and specificity were equal to 
ŜN =

T+

N+
 and ŜP =

T−

N−
. For Bayesian model 2 (‘Bayes 2’), 

the set of numbers {T+,T−,N+,N−} was used to create 

informative priors for sensitivity and specificity. Finally, 
Bayesian model 3 (‘Bayes 3’), assumed that results from 
the gold standard diagnostic method were available for 
an internal validation sample consisting of a randomly 
chosen sample of 200 individuals (10 % of the total num-
ber of individuals).

Two criteria were used to compare the performance 
of these methods. The first criterion assessed how often 
these methods captured the true parameter values within 
their 95  % confidence intervals (CI). Thus, this crite-
rion consisted of the 95 % CI coverage for dataset d and 

method m, given by Cd,m =

∑4
j=1 I

(
β̂ lo
j,d,m <βj,d<β̂hi

j,d,m

)

4 . In 
this equation, βj,d is the jth true parameter value for sim-
ulated data d, and β̂ lo

j,d,m and β̂hi
j,d,m are the jth estimated 

lower and upper bounds of the 95 % CI. The function I() 
is the indicator function, which takes on the value of one 
if the condition inside the parentheses is true and zero 
otherwise. Given that statistical significance of param-
eters is typically judged based on these CIs, it is critical 
that these intervals retain their nominal coverage. Thus, 
Cd,m values close to 0.95 indicate better models.

One problem with the 95  % CI coverage criterion, 
however, is that a model might have good coverage as 
a result of exceedingly wide intervals, a result that is 
undesirable. Thus, the second criterion consisted in a 
summary measure that combines both bias and vari-
ance, given by the mean-squared errors (MSE). This 
statistic was calculated for dataset d and method m as 

MSEd,m =

∑4
j=1 E

[(
βj,d−β̂j,d,m

)2]

4 , where β̂j,d,m and βj,d 
are the jth slope estimate and true parameter, respec-
tively. Smaller values of MSEd,m indicate better model 
performance.

Case study
Case study data came from a rural settlement area in 
the western Brazilian Amazon state of Acre, in a loca-
tion called Ramal Granada. These data were collected 

Table 1  Summary of the proposed statistical models, their assumptions regarding the diagnostic method, and the addi-
tional data required to fit these models

Model Additional data requirement Assumptions related to detection

Standard logistic regression None Perfect detection (i.e., sensitivity and specificity equal to 
100 %)

Bayesian model 1 Estimate of sensitivity ŜN and specificity ŜP based on  
external study

Sensitivity and specificity are perfectly known constants, 
equal to the estimates from external study

Bayesian model 2 Data on sensitivity and specificity (i.e., N+ , T+ ,N− , T−)  
from external study

Sensitivity and specificity are constants and external study 
provides reasonable prior information on sensitivity and 
specificity for the target study

Bayesian model 3 Subset of individuals diagnosed with the regular and the 
gold standard method

Sensitivity and specificity can vary as a function of covari-
ates. This model does not rely on data from external study 
(i.e., does not rely on transportability assumption)
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in four cross-sectional surveys between 2004 and 2006, 
encompassing 465 individuals. Individuals were tested 
for malaria using both microscopy and PCR, regardless 
of symptoms. Additional details regarding this dataset 
can be found in [22, 23].

Microscopy test results were analyzed first using a 
standard logistic regression model, where the poten-
tial risk factors were age, time living in the study region 
(‘Time’), gender, participation on forest extractivism 
(‘Extract’), and hunting or fishing (‘Hunt/Fish’). Taking 
advantage of the concurrent microscopy and PCR results, 
the outcomes from this standard logistic regression 
model were then contrasted with that of Bayesian model 
3.

Microscopy sensitivity is known to be strongly influ-
enced by parasitaemia. Furthermore, it has been sug-
gested that people in the Amazon region can develop 
partial clinical immunity (probably associated with lower 
parasitaemia) based on past cumulative exposure to low 
intensity malaria transmission [23–25]. Because rural set-
tlers often come from non-malarious regions, time living 
in the region might be a better proxy for past exposure 
than age [23]. For these reasons, microscopy sensitivity 
was modelled as a function of age and time living in the 
region.

Results
Systematic literature review
Of the 36 studies that satisfied the criteria, 70 % did not 
acknowledge imperfect detection in malaria outcome. 
The only articles that accounted for imperfect detection 
were those exclusively focused on the performance of 
diagnostic tests [26–28]. No instances were found where 
imperfect detection was specifically incorporated into a 
logistic regression framework, despite the existence of 
methods to correct this problem within this modelling 
framework. These results suggest that malaria epidemi-
ologists are generally unaware of the strong impact that 
imperfect detection can have on parameter estimates 
from logistic regression.

Simulations
Differences between the standard logistic regression and 
the proposed Bayesian models were striking regarding 
their 95 % credible interval (CI) coverage. The standard 
logistic regression had consistently lower than expected 
95 % CI coverage, frequently missing the true parameter 
estimates (Fig.  1). For example, in the most optimistic 
scenario regarding the performance of the diagnostic 
method (scenario in which sensitivity and specificity were 
set to 0.9 and 0.98, respectively) only 6 % of the standard 
logistic regressions returned CIs that always contained 
the true parameter. On the other hand, the Bayesian 

models performed much better, frequently producing CIs 
that always contained the true parameters.

Results also suggest that the improved 95 % CI coverage 
from the Bayesian models did not come at the expense 
of overly wide intervals. Indeed, these models greatly 
improved estimation of the true regression parameters 
under the MSE criterion compared to the standard logis-
tic regression model (Fig.  2). The Bayesian models out-
performed (i.e., had a smaller MSE) the standard logistic 
regression model in >78  % of the simulations. Finally, 
simulation results also revealed that diagnostic meth-
ods with low sensitivity and/or low specificity generally 
resulted in much higher MSE (notice the y-axis scale in 
Fig.  2), highlighting how imperfect detection can sub-
stantially hinder the ability to estimate the true regres-
sion parameters, regardless of the method employed to 
estimate parameters.

Case study
Findings reveal that the standard logistic regression 
results might fail to detect important risk factors (e.g., 
participation in forest extractivism ‘Extract’), might over-
estimate some effect sizes (e.g., participation in hunting/
fishing ‘Hunt/Fish’), or might incorrectly detect a sig-
nificant quadratic relationship (e.g., ‘Time2’) (left panel 
in Fig. 3). The Bayesian model also suggests that settlers 
living for a longer period of time in the region tended to 
have lower parasitaemia, leading to a statistically signifi-
cant lower microscopy sensitivity, as well as statistically 
significant lower probability of infection (right panels in 
Fig. 3). On the other hand, age was neither a significant 
covariate for sensitivity nor for probability of infection.

Discussion
A review of the literature shows that malaria epide-
miologists seldom modify their logistic regression to 
accommodate for imperfect diagnostic test results. Yet, 
the simulations and case study illustrate the pitfalls of 
this approach. To address this problem, three Bayesian 
models are proposed that, under different assumptions 
regarding data availability, appropriately accounted for 
sensitivity and specificity of the diagnostic method and 
demonstrated how these methods significantly improve 
inference on disease risk factors. Given the widespread 
use of logistic regression in epidemiological studies 
across different geographical regions and diseases and the 
fact that imperfect detection methods are not restricted 
to malaria, this article can help improve current data col-
lection and data analysis practice in epidemiology. For 
instance, awareness of how imperfect detection can bias 
modelling results is critical during the planning phase 
of data collection to ensure that the appropriate internal 
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validation dataset is collected if one intends to use Bayes-
ian model 3.

Two of the proposed Bayesian models (‘Bayes 1’ and 
‘Bayes 2’) rely heavily on external information regarding 
the diagnostic method (i.e., external validation data). As 
a result, if this information is unreliable, then these meth-
ods might perform worse than the simulations suggest. 

Furthermore, a key assumption in both of these models is 
that sensitivity and specificity do not depend on covari-
ates (i.e., non-differential classification). This assumption 
may or may not be justifiable. Thus, a third model (‘Bayes 
3’) was created which relaxes this assumption and relies 
on a sub-sample of the individuals being tested with both 
the regular diagnostic and gold standard methods (i.e., 

Fig. 1  The proposed Bayesian models have a much better 95 % CI coverage than the standard logistic regression model. 95 % confidence/cred-
ible interval (CI) coverage for four different methods are shown for different scenarios of sensitivity (SN) and specificity (SP) [SN = 0.6 and SP = 0.9 
(upper left panel); SN = 0.9 and SP = 0.9 (upper right panel); SN = 0.6 and SP = 0.98 (lower left panel); SN = 0.9 and SP = 0.98 (lower right panel)]. These 
results are based on 100 simulated datasets, with 2000 individuals in each dataset. Results closer to 0.95 (blue horizontal dashed lines) indicate better 
performance
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internal validation sample). For this latter model, one has 
to be careful regarding how the sub-sample is selected; if 
this sample is not broadly comparable to the overall set of 
individuals in the study (e.g., not a random sub-sample), 
biases might be introduced in parameter estimates [e.g., 
29]. These three models are likely to be particularly use-
ful for researchers interested in combining abundant data 
from cheaper diagnostic methods (e.g., data from routine 

epidemiological surveillance) with limited research data 
collected using the gold standard method [22, 30].

An important question refers to how to determine the 
size of the internal validation sample. To address this, it 
is important to realize that Bayesian model 3 encom-
passes three regressions: one for the probability of being 
diseased, another to model sensitivity and the third to 
model specificity. The sensitivity regression relies on 

Fig. 2  The Bayesian models outperformed the standard logistic regression model based on the MSE criterion. Mean squared error (MSE) for four 
different methods are shown for different scenarios of sensitivity (SN) and specificity (SP) [SN = 0.6 and SP = 0.9 (upper left panel); SN = 0.9 and SP = 
0.9 (upper right panel); SN = 0.6 and SP = 0.98 (lower left panel); SN = 0.9 and SP = 0.98 (lower right panel)]. These results are based on 100 simulated 
datasets, with 2000 individuals in each dataset. Smaller values indicate better performance
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those individuals diagnosed to be positive by the gold 
standard method while the specificity regression relies on 
those with a negative diagnosis using the gold standard 
method. As a result, if prevalence is low, then the sensitiv-
ity regression will have very few observations and there-
fore trying to determine the role of several covariates on 
sensitivity is likely to result in an overfitted model. Simi-
larly, if prevalence is high, the specificity regression will 
have very few observations and care should be taken not 
to overfit the model. Ultimately, the necessary size of the 
internal validation sample will depend on overall disease 
prevalence (as assessed by the gold standard method) and 
the number of covariates that one wants to evaluate when 
modelling sensitivity and specificity. Finally, an important 
limitation of Bayesian model 3 is the assumption that the 
gold standard method performs perfectly (i.e., sensitivity 
and specificity equal to 1), which is clearly overly optimis-
tic [31, 32]. Developing straightforward models that avoid 
the assumption of a perfect gold standard method repre-
sents an important area of future research.

Possible extensions of the model include allowing for 
correlated sensitivity and specificity or allowing for mis-
classification in response and exposure variables, as in 
[33, 34]. Furthermore, although this paper focused on the 
standard logistic regression, imperfect detection impacts 
other types of models as well, such as survival models 
[35] and Poisson regression models [20]. Finally, the ben-
efits of using these models apply specifically to cross-sec-
tional and cohort studies but not to case–control studies. 

In case–control studies, disease status is no longer ran-
dom (i.e., it is fixed by design) and thus additional 
assumptions might be needed for the methods presented 
here to be applicable [16].

Conclusions
The standard logistic regression model has been an 
invaluable tool for epidemiologists for decades. Unfor-
tunately, imperfect diagnostic test results are ubiquitous 
in the field and may lead to considerable bias in regres-
sion parameter estimates. Given the numerous diag-
nostic methods employed by malaria researchers and 
the ubiquitous use of logistic regression to model the 
results of these diagnostic methods, this paper provides 
critical guidelines to improve data analysis practice in 
the presence of misclassification error. Easy-to-use code 
is provided that can be readily adapted to WinBUGS and 
enables straightforward implementation of the proposed 
Bayesian models. The time is ripe to improve upon the 
standard logistic regression and better address the chal-
lenge of modelling imperfect diagnostic test results.

Additional files

Additional file 1: Code for the Bayesian models used in the main 
manuscript.

Additional file 2: Simulated data used to illustrate Bayesian model 1.

Additional file 3: Simulated data used to illustrate Bayesian model 2.

Additional file 4: Simulated data used to illustrate Bayesian model 3.

Fig. 3  Results from the standard logistic regression (black) and Bayesian model 3 (blue). Left panel shows that inference regarding disease risk factors 
can be substantially different when using the standard logistic regression and Bayesian model 3. Stars indicate 95 % confidence/credible intervals 
that did not include zero. The ‘Time’ covariate refers to time of residence in the region. Right panels show that both microscopy sensitivity and infec-
tion probability decrease as a function of time living in this region
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