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Abstract 

Background:  Insecticide resistance in major malaria vectors poses severe challenges for stakeholders responsible for 
controlling the disease. During the 2013/14 season, malaria vector sentinel sites in Mutare and Mutasa Districts, Zim-
babwe, experienced high presence of gravid malaria vector mosquitoes resting indoors in recently pyrethroid-sprayed 
structures. Subsequently, an evaluation of insecticide resistance in Anopheles funestus populations, the major malaria 
vector, was conducted to better inform the Zimbabwe National Malaria Control Programme.

Methods:  Indoor-resting mosquitoes were collected in randomly selected pyrethroid-sprayed houses around Burma 
Valley and Zindi sentinel sites in Mutare and Mutasa Districts, respectively, using prokopac aspirator in February 2014. 
A. funestus mosquitoes were identified in the field using morphological keys and divided into two cohorts. One cohort 
was used immediately for WHO susceptibility tests and the other batch was transferred to the National Institute of 
Health Research insectary in Harare for oviposition. Susceptibility and intensity resistance assays were carried out on 
polymerase chain reaction-assayed, 3–5 days old, A. funestus s.s. F1 progeny females.

Results:  Eight-hundred and thirty-six A. funestus and seven Anopheles gambiae complex mosquitoes were collected 
resting inside living structures. Wild caught females showed resistance to lambda-cyhalothrin (3.3 % mortality), 
deltamethrin (12.9 % mortality), etofenprox (9.2 % mortality), and bendiocarb (11.7 % mortality). F1 A. funestus female 
progeny indicated resistance to deltamethrin (14.5 % mortality), lambda-cyhalothrin (6.9 % mortality), etofenprox 
(8.3 % mortality), and bendiocarb (16.8 % mortality). Wild caught and female progeny were susceptible to DDT and 
pirimiphos-methyl (100 % mortality). Intensity resistance assay to bendiocarb was 100 % mortality, while deltame-
thrin, lambda-cyhalothrin, and etofenprox had increased knockdown times with mortalities ranging between 66.7 
and 92.7 % after 24-h exposures.

Conclusion:  This study is the first report of pyrethroid and carbamate resistance in A. funestus populations from 
Burma Valley and Zindi areas and indicates a major threat to the gains made in malaria vector control in Zimbabwe. In 
view of the current extension and intensity of such resistance, there is urgent need to set up a periodic and systematic 
insecticide resistance-monitoring programme which will form the basis for guiding the selection of insecticides for 
indoor residual spraying and distribution of pyrethroid-treated mosquito nets.
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Background
Human malaria remains one of the most important 
public health challenges worldwide. In 2013, there were 
an estimated 198 million episodes of malaria and about 
584,000 deaths globally [1]. Among the malaria-endemic 
countries in sub-Saharan Africa, malaria contributed 
20–30 % of the outpatient attendance in Zimbabwe, with 
about 1.5 million cases occurring annually over the past 
5 years [2]. Approximately 98 % of the cases are caused by 
Plasmodium falciparum transmitted primarily by Anoph-
eles arabiensis, with Anopheles gambiae sensu stricto and 
Anopheles funestus s.s., the secondary vectors in most 
regions of the country. Choi et al. [3] and Sande et al. [4] 
have reported A. funestus as the major vector of malaria 
in Mutare and Mutasa Districts of Manicaland Province 
in Zimbabwe.

Improved diagnostic testing and a wider availability of 
effective medicines to treat malaria, as well as to control 
vectors predominantly through the use of indoor residual 
spraying (IRS) and long lasting insecticidal nets (LLINs), 
are the global key interventions for interruption of 
malaria transmission [5]. Several studies have shown the 
efficacy of IRS and LLINs in reducing malaria incidence 
in almost all settings [6, 7].

Malaria control in Zimbabwe relies heavily on IRS and 
LLINs to target endophilic and endophagic vector mos-
quitoes, respectively. Presently, IRS and LLINs depend on 
the four most common, WHO-recommended, classes of 
insecticides: organochlorines, organophosphates, pyre-
throids, and carbamates. Of these, pyrethroids account 
for the majority of IRS coverage worldwide and are at the 
moment used in treatment of all LLINs [8].

Since the 1940s, residual spraying with dichloro-diphe-
nyl-trichloro-ethane (DDT) and more recently pyre-
throids has been National Malaria Control Programme’s 
(NMCP) dominant/primary vector control practice in 
Zimbabwe. Mosquito nets traditionally played a much 
smaller role until the introduction of LLIN campaigns 
under the universal coverage goal over the past few years. 
When the LLIN distribution campaign began, there was 
no clear rationale for the balance of LLINs and IRS cov-
erage in Zimbabwe as guided by WHO [5] recommen-
dations. The high reliance on insecticide-based malaria 
control in public health, agriculture and at household 
levels has increased the selection pressure exerted by 
insecticides on malaria vectors [9]. The emergence and 
spread of insecticide resistance among malaria vectors 
has placed global control efforts at high risk.

Insecticide resistance is the ability of an insect popu-
lation to survive exposure to the dosage of a given com-
pound that is lethal to the majority of individuals of a 
susceptible lineage of the same species [9]. Malaria vec-
tors are able to resist the action of insecticides due to 

various resistance mechanisms. Among these mecha-
nisms: metabolic resistance, which occurs when endog-
enous, insecticide-detoxifying enzymes become more 
efficient in metabolizing the insecticide, preventing it 
from reaching its target in the nervous system, and tar-
get site resistance, which results from modification on 
the site of action in resistant strains of vectors, such that 
the insecticide no longer binds effectively, are the most 
important, although metabolic resistance is the most 
common [10].

Pyrethroid resistance, conferred by reduced target 
site sensitivity arising from a single point mutation in 
the sodium channel gene, at times referred to as knock-
down resistance, has been confirmed in A. gambiae s.s. in 
West, Central and East Arica [11]. A study by Hunt et al. 
[12] documented insecticide resistance to permethrin, 
deltamethrin, bendiocarb, and propoxur in A. funestus 
populations collected in Likoma Island in Lake Malawi. 
Chanda et  al. [13] reported DDT, lambda-cyhalothrin 
and deltamethrin resistance in A. funestus and A. gam-
biae s.s. collected in Zambia. A. funestus collected in 
Mozambique and Uganda showed resistance to bendio-
carb, permethrin, deltamethrin, and lambda-cyhalothrin 
[14, 15]. In Kwazulu/Natal, South Africa, A. funestus was 
found to be resistant to both pyrethroids and carbamates 
[16].

Despite the long history of IRS in Zimbabwe, there 
have been few instances when resistance has been 
recorded [17]. A. arabiensis resistance to benzene hexa-
chloride was recorded in Chiredzi District [18], one relat-
ing to DDT in Gokwe [19], and more recently pyrethroid 
resistance in Gokwe [20]. However, there are no major 
published studies on insecticide resistance in A. funestus 
in Zimbabwe. The first A. funestus resistance to deltame-
thrin, lambda-cyhalothrin and bendiocarb was reported 
by Choi et al. [3] in Mandeya ward, Mutasa District.

The lack of data on the status of insecticide resistance 
in A. funestus, the presence of this vector in recently 
pyrethroid-sprayed houses in villages around Burma Val-
ley, Mutare District, Zimbabwe, and nearby Zindi area 
in Mutasa District, and high dependency on pyrethroid-
based IRS and LLINs, is a cause for concern to the Zim-
babwe NMCP. This study was aimed at assessing the 
insecticide resistance in A. funestus populations from 
Burma Valley and Zindi areas in Mutare and Mutasa Dis-
tricts, respectively.

Methods
Study sites
The study was conducted in Mutare and Mutasa Districts 
in Manicaland Province, located east of Zimbabwe, 263 
and 270 km, respectively, from Harare, and bordered to 
the east by Manica Province in Mozambique. The study 
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sites were Burma Valley (19°11′S, 32°48′E; elevation 
679  m) in Mutare District and Zindi (18°22′S, 32°56′E; 
elevation 766 m) in Mutasa District (Fig. 1). Burma Valley 
and Zindi sites are respectively situated south and north 
of the city of Mutare, the provincial capital of Manica-
land Province. Studies were carried out from 10 to 23 
February, 2014. Both study sites are rural areas with a 
total population of 13,880 (Burma Valley 4506 and Zindi 
9374).

Domestic animals such as cattle, goats, chickens, and 
dogs are commonly kept around dwellings inhabited by 
people, with pigs found in only a few households. Two 
types of houses are common in the study sites: tradi-
tional houses, pole and mud plastered superstructures 
with thatched roofs, and western-style houses built using 
cement mortar and burnt bricks, roofed with either cor-
rugated iron sheets or asbestos.

Both sites have a tropical climate which is hot, with 
annual temperature ranging from 18 to 30  °C in winter 
through to summer [21]. The rainfall pattern constitutes 
one season per annum which usually spans November to 
March, with December to February, the wettest months 
[21]. Most small rivers and streams in Zindi empty into 

perennial Pungwe River, which flows to Mozambique. 
Burma Valley, with several streams and perennial rivers, 
also runs to Mozambique. The rivers and streams form 
extensive stagnant water bodies and marshes during the 
rainy season (November–March), which are potential 
breeding sites for vectors of public health importance.

Cultivation on the river banks is common in the vil-
lages around the study sites. Both small and large-scale 
farming is practiced, with the majority of the people 
growing maize, yams and bananas. Eastern Highlands 
Estates located in Zindi ward, and a few small-scale com-
mercial farms in Burma Valley, grow tea and tobacco, 
respectively. Both small and large-scale farmers usu-
ally use pyrethroids, organophosphates and carbamates 
to protect their crops from various types of agricultural 
pests. A. funestus is the major malaria vector in Burma 
Valley and Zindi [4], with the densities fluctuating follow-
ing rainfall patterns, temperatures and relative humidity. 
Consequently, malaria transmission is high and occurs 
seasonally, with highest cases recorded towards the end 
of the rainy season (March/April). IRS and LLINs are the 
major tools deployed to interrupt malaria transmission in 
the villages around the study sites.

Fig. 1  Map showing Burma Valley and Zindi study sites, Zimbabwe
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Collection of Anopheles funestus populations
Indoor-resting adult mosquitoes were collected from 
houses between 06.00 and 10.00 hours using a prokopac 
battery-powered aspirator [22]. Live mosquitoes were 
identified to species level using morphological features 
[23, 24]. Mosquitoes identified as belonging to the A. 
funestus group were divided into two cohorts and held 
in cages where they were fed with 10  % sugar solution. 
One cohort was used immediately for WHO insecticide 
susceptibility bioassays and the other batch transferred to 
National Institute of Health Research (NIHR) insectary 
in Harare to allow for oviposition.

Laboratory processing of mosquitoes
Live blood-fed and gravid adult female A. funestus were 
pooled and individually isolated and allowed to lay eggs. 
Larvae were reared through to F1 adults under standard 
insectary conditions of 25–27  °C and 70–80  % relative 
humidity. Polymerase chain reaction (PCR) using two 
legs per mosquito was carried out following the proto-
col of Koekemoer [25] to confirm the sibling species of 
all females that laid eggs, and susceptibility and intensity 
resistance assays were conducted on the F1 progeny only 
of A. funestus s.s. females.

Insecticide susceptibility tests
Randomly selected, non-blood fed, F1 progeny (3–5 days 
old) and gravid wild caught samples were subjected to 
standard WHO susceptibility tests [26]. Standard insec-
ticide-treated papers supplied by WHO (Malaysia) were 
used to test for susceptibility to 4  % DDT, 0.05  % del-
tamethrin, 0.05 % lambda-cyhalothrin, 0.5 % etofenprox, 
0.1 % bendiocarb, and 1 % pirimiphos methyl. Twenty to 
25 female mosquitoes were exposed in each tube. Nega-
tive controls consisted of untreated papers, impreg-
nated with different oil according to the insecticide 
used. Knockdowns were recorded 10, 15, 20, 30, 40 min 
through to 1 h after the start of exposure. Final mortality 
was scored 24 h post exposure and a 10 % sugar solution 
was provided to survivors. Where the mortality in the 
control group was above 5 % but less than 20 %, correc-
tion of mortality was made by applying Abbott’s formula, 
with the test results discarded when control mortality 
was more than 20 %. Results were accepted if no mortal-
ity was observed in the control. WHO [26] criterion for 
interpretation of results was followed for considering 
vector species susceptible (mortality 98–100  %), poten-
tially resistant (mortality 90–97 %) and resistant (mortal-
ity <90 %).

Resistance intensity assays
F1 progeny female mosquitoes were exposed to 0.05  % 
lambda-cyhalothrin, 0.05  % deltamethrin, 0.5  % 

etofenprox, and 0.1 % bendiocarb-treated papers contin-
uously for 8 h with knockdown being recorded at 5-, 10-, 
15-, 20-, 30-, 40-, 50-, 60-, 80-, and 120-min intervals, 
and hourly thereafter up to 8 h. The 8-h cut-off was pur-
posely selected as the likely time a mosquito might come 
into contact with a sprayed wall/surface before or after a 
taking blood meal [3].

Data analysis
WHO [26] guideline for evaluating susceptibility in 
mosquito populations was followed in which mortal-
ity of 98–100  % indicates susceptibility; 90–97  % sug-
gests potential resistance that needs to be confirmed, 
and less than 90 % indicates resistance. Data for the two 
study sites were tested using two-factor without repli-
cation Analysis of Variance (ANOVA), at 5  % level of 
significance.

Ethical consideration
Verbal informed consent was obtained from community 
leaders and each head of household or representative 
before mosquito collection was conducted in the selected 
houses.

Results
Mosquito collection
A total of 846 Anopheles mosquitoes were collected 
resting inside recently pyrethroid-sprayed houses in 
the villages surrounding Burma Valley and Zindi over a 
two-week period in February 2014. Eight-hundred and 
thirty-six were identified morphologically as belonging 
to the A. funestus group, seven to the A. gambiae s.l. and 
the remaining three to other Anopheles species. Of the 
A. funestus group, 390 live mosquitoes were transported 
to NIHR for oviposition and PCR-based species identi-
fication, while 446 wild A. funestus female of unknown 
age were tested for insecticide resistance at the field 
insectaries with no temperature and relative humid-
ity control. The results of these tests are summarized 
on Table  1. The wild-caught A. funestus group showed 
evidence of pyrethroid and carbamate resistance, but 
were susceptible to DDT and organophosphates. How-
ever, the sample size of wild A. gambiae s.l. females was 
too small (n = 7) to conduct meaningful susceptibility/
resistance tests.

Mosquito rearing and PCR‑species identification
From the 390 samples transported to NIHR insectary, 
220 oviposition Eppendorf tubes were set up with indi-
vidual gravid A. funestus females, about 134 batches 
were obtained, and more than 1900 F1 adult mosquitoes 
emerged from both sites. The results from the PCR-based 
assays confirmed that all the 220 females that laid eggs, 
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as well as the 446 wild adults used in the susceptibility/
resistance test, were A. funestus s.s., while analysis of 
wild A. gambiae s.l. showed that A. arabiensis was pre-
dominant (71.4 %, 5/7) followed by a non-malaria vector, 
Anopheles quadriannulatus (28.6 %, 2/7).

Insecticide susceptibility assays
Table  2 presents the mean mortalities and the standard 
deviations of A. funestus F1 progeny females that origi-
nated from the villages in Burma Valley and Zindi follow-
ing exposure to insecticide-treated papers. Mortality in 
unexposed controls from both sites was less than 5 % in 
all experiments and no correction of test sample mortal-
ity data was therefore required. The treated papers used 
were assayed on a susceptible laboratory strain of A. ara-
biensis and showed 100  % mortality for all specimens 
and replicates (n =  100 mosquitoes per insecticide). A. 
funestus was resistant to lambda-cyhalothrin, deltame-
thrin and etofenprox (pyrethroids), and bendiocarb (car-
bamate), but susceptible to DDT (organochlorine) and 
pirimiphos-methyl (organophosphate) at both collecting 
sites. There was no significant difference in mortality of 
mosquitoes from Burma Valley and Zindi after exposure 
to pyrethroids (ANOVA: df = 4; F = 0.23; P = 0.92) and 

to bendiocarb (ANOVA: df = 1; F = 0.18; P = 0.71). The 
difference in percentage mortality between pyrethroid 
and carbamate assays and sites was also not statistically 
significant (ANOVA: df = 1; F = 4.39; P = 0.13).

Knockdown effect of insecticide on F1 Anopheles funestus 
progeny females
Common similarities were observed in KD50 and KD95 
values between the pyrethroids (lambda-cyhalothrin 
and deltamethrin) and carbamates (bendiocarb), and 
between organochlorines (DDT) and organophosphates 
(pirimiphos-methyl) in both Burma Valley and Zindi 
sites (Table 3). The knockdown effects of the four classes 
of insecticides tested over 1 h showed more rapid knock-
down rate for DDT and pirimiphos-methyl than the other 
two classes of insecticides (Table 3). DDT knocked down 
50 and 95 % of the mosquitoes from both sites within 50 
and 60 min of exposure, respectively. Fifty per cent and 
95  % knockdown was achieved within 50 and 80  min, 
respectively, for mosquitoes collected from Zindi when 
exposed to pirimiphos-methyl. There was loss of knock-
down effect on all samples from both sites when exposed 
for 80 min to lambda-cyhalothrin and deltamethrin and 
bendiocarb.

Table 1  Percentage mortality observed in WHO susceptibility tests carried out on wild caught members of the A. funestus 
group in Burma Valley and Zindi, Zimbabwe

ND not done

Insecticide Site 24 h post exposure

n % mortality Status

0.05 % lambda-cyhalothrin (pyrethroid) Burma Valley 47 6.5 R

Zindi 20 0 R

P value (between sites) – 0.35 –

0.05 % deltamethrin (pyrethroid) Burma Valley 31 12.9 R

Zindi ND – –

P value (between sites) – – –

0.5 % etofenprox (pseudo-pyrethroid) Burma Valley 33 3 R

Zindi 39 15.4 R

P value (between sites) – 0.21 –

0.1 % bendiocarb (carbamate) Burma Valley 38 21.1 R

Zindi 43 2.3 R

P value (between sites) – 0.67 –

4 % DDT (organochlorine) Burma Valley 36 100 S

Zindi 30 100 S

P value (between sites) – 0.50 –

1 % pirimiphos-methyl (organophosphate) Burma Valley 30 100 S

Zindi 34 100 S

P value (between sites) – 0.50 –

Control Burma Valley 35 0 –

Zindi 30 0 –

P value (between sites) – 0.50 –
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Insecticide resistance intensity in Anopheles funestus F1 
female progeny
Anopheles funestus exhibited various levels of knock-
down effects after 8-h exposure to insecticides, with 
highest sensitivity observed in bendiocarb for the two 
localities (Table  4). In both areas, there was no statisti-
cally significant difference in responses among lambda-
cyhalothrin, deltamethrin and etofenprox over the entire 
8-h observation period (ANOVA: df  =  5; F  =  2.39; 
P = 0.11). Although knockdown rate for deltamethrin in 
Burma Valley and Zindi sites were observed from 30 and 
80 min, respectively, the sensitivity of the mosquitoes to 

the insecticide could not stretch beyond 90 % knockdown 
effect within an 8-h monitoring period (Figs. 2, 3). Simi-
larly, observations on lambda-cyhalothrin and etofenprox 
showed percentage knockdown rate of less than 100 % for 
the entire experimental period in both sites.

Discussion
The status of susceptibility/resistance to lambda-cyhalo-
thrin, deltamethrin, etofenprox, bendiocarb, DDT and 
pirimiphos-methyl was evaluated in A. funestus wild 
populations and F1 progeny females collected from 
Burma Valley and Zindi in Zimbabwe. With guidance 

Table 2  WHO bioassay tests for resistance on 3–5 day old female F1 A. funestus progeny from Burma Valley and Zindi car-
ried out in February 2014

‡, number of tubes/replicates; R, resistant; S, susceptible

Insecticide 24 h % observed mortality

n (‡) % mortality (range) Standard deviation Resistance status

0.05 % lambda-cyhalothrin 100 (4) 9 (4–13.8) 3.5 R

0.05 % deltamethrin 87 (4) 12.6 (10.8–14.7) 1.5 R

0.5 % etofenprox 90 (4) 3.3 (1.6–4.9) 1.3 R

0.1 % bendiocarb 98 (4) 25.5 (21.3–28.8) 2.8 R

4 % DDT 100 (4) 100 0 S

1.0 % pirimiphos methyl 100 (4) 100 0 S

Untreated control 129 (5) 0.8 (0–1.8) 0.9 –

0.05 % lambda-cyhalothrin 107 (5) 4.7 (3.8–5.7) 0.6 R

0.05 % deltamethrin 92 (4) 16.3 (14.0–18.4) 1.6 R

0.5 % etofenprox 83 (4) 13.3 (11.8–14.9) 1.1 R

0.1 % bendiocarb 100 (4) 8 (5.5–10.2) 2 R

4 % DDT 114 (5) 100 0 S

1.0 % pirimiphos methyl 96 (4) 100 0 S

Untreated control 122 (5) 0 0 –

Table 3  Association between percentage 24-h mortality and knockdown (KD) time using WHO test tubes

S, susceptible; R, resistant; KD, knockdown; KD50, knockdown rate for 50 % of mosquitoes; KD95, knockdown rate for 95 % of mosquitoes; No KD, loss of knockdown 
effect (<20 % of mosquitoes knocked down after 1-h exposure)

Insecticide Site % mortality KD50 (min) KD95 (min) Resistance status

0.05 % lambda-cyhalothrin Burma Valley 9.0 No KD No KD R

Zindi 4.7 No KD No KD R

0.05 % Deltamethrin Burma Valley 12.6 No KD No KD R

Zindi 16.3 No KD No KD R

0.1 % Bendiocarb Burma Valley 25.5 No KD No KD R

Zindi 8.0 No KD No KD R

0.5 % Etofenprox Burma Valley 3.3 No KD No KD R

Zindi 13.3 No KD No KD R

4 % DDT Burma Valley 100 50 60 S

Zindi 100 40 50 S

1 % Pirimiphos-methyl Burma Valley 100 30 60 S

Zindi 100 50 80 S
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Table 4  Resistance intensity results of F1 progeny raised from female A. funestus collected in Burma Valley and Zindi

§, number of tubes/replicates

Insecticide Location n (§) KD50 (min) % knockdown after 8-h exposure (range) Standard deviation

0.05 % λ-cyhalothrin Burma Valley 58 (3) 240 84.4 (83.7–85.4) 0.7

Zindi 110 (5) 300 92.7 (90.2–94.2) 1.7

0.05 % deltamethrin Burma Valley 100 (4) 300 90 (86.2–93.7) 2.7

Zindi 75 (3) 240 84 (80.9–86.6) 2.4

0.1 % bendiocarb Burma Valley 39 (2) 120 100 0

Zindi 105 (5) 80 100 0

0.5 % etofenprox Burma Valley 24 (1) 300 66.7 –

Zindi 41 (2) 480 70.7 (69.8–71.6) 0.9
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Fig. 2  Insecticide intensity resistance test in Anopheles funestus in Burma Valley
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Fig. 3  Insecticide intensity resistance test in A. funestus in Zindi



Page 8 of 10Sande et al. Malar J  (2015) 14:466 

from WHO [26] protocol for characterizing insecticide 
resistance, where susceptibility is defined by mortality 
rates above 98  % and resistance by mortality less than 
90  % 24-h post exposure, this study provides evidence 
that A. funestus populations from both sites were resist-
ant to pyrethroids and carbamates, but susceptible to 
DDT and pirimiphos-methyl. The information is impor-
tant in malaria vector control operations, which in Zim-
babwe are strongly dependent on the use of insecticides 
in IRS and LLINs.

Zimbabwe has been using DDT for both tsetse fly and 
malaria vector control since 1949 [20]. Currently, DDT 
is being applied for malaria vector control in the low 
veld zones of Zimbabwe (<600  m altitude), and pyre-
throids, especially lambda-cyhalothrin and deltame-
thrin, are used interchangeably to cover the middle veld 
zones (600–1200 m altitude). Continuous application of 
DDT and alternating lambda-cyhalothrin with deltame-
thrin might increase selection pressure, resulting in early 
loss of sensitivity in vector populations. Choi et  al. [3] 
reported A. funestus resistance to lambda-cyhalothrin, 
deltamethrin and bendiocarb for the first time in the area 
adjacent to the Zindi collecting site, but no DDT and 
organophosphate-resistant populations were detected in 
that area. These findings are consistent with the results 
of the present work, which showed resistance in A. funes-
tus to pyrethroids and bendiocarb. In both areas, there 
was no statistically significant difference in 24-h mortal-
ity among lambda-cyhalothrin, deltamethrin, etofenprox, 
and bendiocarb (ANOVA: df = 7; F = 0.93; P = 0.51). The 
detection of deltamethrin and lambda-cyhalothrin resist-
ance in the A. funestus populations in Burma Valley and 
Zindi is a worrying result as these are the most common 
insecticides applied interchangeably by NMCP in Zimba-
bwe to prevent malaria transmission in the study areas.

The build-up of pyrethroid and carbamate resistance 
in the A. funestus populations from the two study areas 
is not clear. Most probably the increase in the selection 
pressure exerted by pyrethroids may be attributed to 
their continuous use in public health, agriculture and at 
household level to control domestic pests. Bendiocarb 
resistance may be mainly associated with application in 
agriculture, which is a major source of livelihood in both 
study areas. The incrimination of agricultural use of pes-
ticides in the selection pressure against Anopheles pop-
ulations has also been reported in several countries in 
West Africa [27, 28]. Since pyrethroid resistance has been 
reported to result mainly from agricultural application, 
it is likely that such resistance will develop regardless of 
the organized use of pyrethroids in properly managed 
malaria control programmes [29].

Results of the present work agree with other studies 
that reported pyrethroid and bendiocarb resistance in the 

A. funestus populations from Malawi [12], Zambia and 
Zimbabwe [3], Mozambique [30], and Ghana [31]. The 
reported occurrence of permethrin and DDT resistance 
in malaria vectors in Gokwe District in Zimbabwe [20] 
was not detected in A. gambiae s.l. populations from 16 
sentinel sites (Burma Valley and Zindi included) in Zim-
babwe following a nationwide study [17]. Resistance to 
pyrethroids generally confers cross-resistance to other 
insecticides with the same mode of action, thus limit-
ing the alternative choices of effective insecticide [32]. 
The lack of cross-resistance between pyrethroids and 
DDT observed in this study is consistent with the work 
of Coetzee and Koekemoer [33], which reported that 
pyrethroid resistance in A. funestus is mostly conferred 
fully or partially by monooxygenases (P450) in most 
countries in southern Africa. Further, it appears there is 
no knockdown resistance (kdr) gene in southern African 
A. funestus to date [33], as is also clearly indicated by the 
observation of this work. However, cross-resistance to 
pyrethroids and DDT has been reported in most mos-
quito species of public health importance collected from 
other countries as a result of a kdr gene [34, 35].

In addition to mortality, knockdown time might be a 
valuable tool for the early detection of reduced suscep-
tibility, although there are no WHO standards on knock-
down time specified to indicate resistance. Knockdown 
time has long been accepted as an indicator of suscepti-
bility in vector mosquitoes to insecticides. The time pro-
vides initial data on the possible involvement of kdr gene 
[29], although high frequency of a resistant gene does not 
necessarily translate into resistance in Anopheles popula-
tions [36].

The results of this work have demonstrated elevated 
knockdown time for all insecticides tested, with the 
increase more pronounced in pyrethroids and carba-
mates than DDT and organophosphate. However, there 
was no difference between the time required to knock-
down 100  % of the mosquitoes due to DDT and piri-
miphos-methyl from the two sites (ANOVA: df  =  3; 
F  =  1.91; P  =  0.23). Although this study detected no 
resistance to DDT and pirimiphos-methyl, the KD50 and 
KD95 values obtained from both sites for these two insec-
ticides appear to be abnormally high, ranging from 30 
to 80 min to knockdown 100 % of the specimens. These 
results may be an indication of future problems with the 
application of DDT and pirimiphos-methyl in Burma 
Valley and Zindi.

The high survival rates and the increased knockdown 
time detected in this study raise the question of whether 
mosquitoes are withstanding higher concentrations of 
insecticide or whether longer exposure times are needed. 
To address the latter question, a resistance intensity test 
was included in the current study in order to determine 
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the strength of resistance, although it is not the standard 
method of measuring resistance. Currently, the standard 
methods of anopheline bioassays are the WHO [26] tube 
assay and the CDC [37] bottle assay. Although the two 
methods generally agree on resistance frequencies, there 
has been no agreement on the application of resistance 
intensity test as a standard tool for measuring insecticide 
resistance in mosquito populations.

The CDC [37] bottle bioassay method recommends 
the extension of diagnostic time to 2 h in order to evalu-
ate intensity of resistance, but does not give criteria for 
assessing resistance intensity. Within 2  h of continuous 
exposure, A. funestus from both sites showed mortality 
of less than 40  % to lambda-cyhalothrin, deltamethrin 
and etofenprox, with about 80  % to bendiocarb, sug-
gesting a high level of resistance to the pyrethroids. A 
problem with not achieving 100  % knockdown after an 
8-h exposure time to all insecticides used, save for ben-
diocarb, might indicate serious resistance intensity. At 
operational level, this poses a major challenge as it is not 
clear whether a mosquito rests continuously for 8  h on 
a sprayed surface or on a treated net, taking into cogni-
sance the repellency and irritancy properties contained 
in various insecticides.

Conclusion
Focusing on the pattern emerging from the two study 
sites, it is clear that A. funestus resistance to pyrethroids 
and carbamates, and susceptibility to DDT and pirimi-
phos-methyl, are firmly indicated. The resistance in the 
A. funestus populations detected in this study has serious 
implications for the current insecticide-based malaria 
control efforts being undertaken in the study areas. The 
results seem to suggest the need for urgent and effective 
insecticide resistance management strategies necessary 
for the prevention of rapid build-up of resistance across 
all four commonly used classes of insecticides to control 
vectors of public health importance.
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