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Abstract 

Background:  Plasmodium falciparum malaria is a threat to public health, but Plasmodium vivax malaria is most 
prevalent in Latin America, where the incidence rate has been increasing since 2016, particularly in Venezuela and 
Brazil. The Brazilian Amazon reported 193,000 cases in 2017, which were mostly confirmed as P. vivax (~ 90%). Herein, 
the relationships among malaria incidence rates and the proportion of accumulated deforestation were contrasted 
using data from the states of Acre and Rondônia in the south-western Brazilian Amazon. The main purpose is to test 
the hypothesis that the observed difference in incidence rates is associated with the proportion of accumulated 
deforestation.

Methods:  An ecological study using spatial and temporal models for mapping and modelling malaria risk was 
performed. The municipalities of Acre and Rondônia were the spatial units of analysis, whereas month and year were 
the temporal units. The number of reported malaria cases from 2009 until 2015 were used to calculate the incidence 
rate per 1000 people at risk. Accumulated deforestation was calculated using publicly available satellite images. Geo-
graphically weighted regression was applied to provide a local model of the spatial heterogeneity of incidence rates. 
Time-series dynamic regression was applied to test the correlation of incidence rates and accumulated deforestation, 
adjusted by climate and socioeconomic factors.

Results:  The malaria incidence rate declined in Rondônia but remained stable in Acre. There was a high and positive 
correlation between the decline in malaria and higher proportions of accumulated deforestation in Rondônia. Geo-
graphically weighted regression showed a complex relationship. As deforestation increased, malaria incidence also 
increased in Acre, while as deforestation increased, malaria incidence decreased in Rondônia. Time-series dynamic 
regression showed a positive association between malaria incidence and precipitation and accumulated deforesta-
tion, whereas the association was negative with the human development index in the westernmost areas of Acre.
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Background
Human malaria emerged from the tropical forest of 
Africa, propagated globally and became a tropical and 
subtropical disease in the second half of last century 
[1–3]. Six species of Plasmodium parasites can cause dis-
ease in humans: Plasmodium falciparum, Plasmodium 
vivax, Plasmodium malariae, Plasmodium ovale curtisi, 
Plasmodium ovale wallikeri and Plasmodium knowlesi [1, 
4–7]. Recently, Plasmodium simium emerged as another 
potential species to infect humans [8]. The malaria trans-
mission cycle includes Plasmodium spp., anopheline and 
human components [9]. In 2017, 91 countries reported a 
total of 219 million cases of malaria, with 435,000 deaths 
[10]. Worldwide, P. falciparum malaria is more prevalent 
than P. vivax malaria. Plasmodium falciparum malaria 
accounted for 99.7% of the cases in areas across sub-
Saharan Africa [10]. In the Americas, P. vivax malaria 
occurs more frequently than P. falciparum malaria [11–
13], with 723,000 (74%) infections reported in 2017 [10]. 
Whereas P. falciparum causes higher levels of morbidity 
and mortality than P. vivax [14, 15], the latter is gaining 
attention as a major hurdle in the era of malaria elimina-
tion [16, 17]. A reason for this can be that current malaria 
commodities, including the available anti-malarial drugs, 
are not very effective against P. vivax, leading to a high 
proportion of P. vivax asymptomatic reservoirs that can 
infect anopheline vectors [13, 16], further propagating 
the parasites in environments where competent mos-
quito vectors occur.

The global malaria incidence rate has declined from 76 
to 59 cases per 1000 population at risk from 2010 to 2017 
[10]. However, the rate of decrease has either slowed or 
reversed in some regions since 2015 [10]. In the Ameri-
cas (in 2017), malaria incidence has been increasing since 
2013, mainly because of the Bolivarian Republic of Ven-
ezuela, Brazil and Nicaragua [10, 13]. Between 2016 and 
2017, malaria incidence increased approximately 100% in 
Nicaragua and Venezuela. In 2017, Venezuela accounted 
for 53% of reported cases, followed by Brazil (22%) [10]. 
Malaria distribution is spatially clustered, with hotspots 
of transmission in Choco (in Colombia), Loreto (in Peru) 
and Bolivar (in Venezuela) [10, 18]. In Brazil, approxi-
mately 45% of reported cases are from 15 municipalities 
in the states of Acre and Amazonas [18].

In Brazil, malaria decreased by 65% from 2010 
(384,655) to 2016 (133,591). However, the disease 
increased by 63% between 2016 and 2017 (217,928) in 
comparison to 2015 [10]. Most malaria cases occur in the 
Amazon River Basin. In 2017, 193,000 cases occurred in 
the Amazonian Region (99.95%), which were mostly P. 
vivax malaria (174,000; ~ 90%). Consequently, the major-
ity of the studies have focused on hotspots of malaria 
transmission in areas across the Brazilian Amazon (e.g., 
[19–29]). Malaria transmission has been associated with 
several scenarios: (1) legal and illegal mining with high 
human exposure to mosquito bites, human movement 
and extensive environmental changes [16]; (2) expansion 
of agricultural frontiers, leading to deforestation, land-
use changes and human encroachment in forested areas 
[30]; (3) discontinuity of malaria control programmes in 
poorly accessed remote areas [21]; and (4) ecological fac-
tors, which can drastically increase vector abundance, 
such as fish ponds in rural areas and towns [16, 25, 31]. 
These aforementioned transmission settings can repre-
sent transmission hotspots, and they were employed to 
construct a flexible model for predicting malaria emer-
gence in similar scenarios [28, 32].

Frontier malaria is a concept offering an explanation 
for the trajectory of malaria incidence with deforesta-
tion and was applied for predicting the emergence of 
malaria in the Brazilian Amazon region [28]. This con-
cept model predicts high malaria transmission risk in the 
first years of a human settlement in the Amazon forest. 
The main mechanisms are (1) a high number of immu-
nologically naïve immigrants intermixed with asympto-
matic human reservoirs, (2) a high contact rate between 
the main malarial vector and human hosts, and (3) a pre-
carious socio-environmental matrix [28]. After 10  years 
of colonization and development in the settlement, the 
frontier malaria concept predicts a steep malaria decline 
rate. The mechanisms for the decline are related to over-
all improvements in the settlement with economic gains 
from agriculture, ranching and urban development [28].

A mathematical model was developed to address the 
possible dynamical trajectories of malaria with land-
use change in frontier regions [33]. This work is a theo-
retical generalization of the frontier malaria concept, 
with a mathematical model coupling land-use change, 

Conclusion:  Landscape modification caused by accumulated deforestation is an important driver of malaria inci-
dence in the Brazilian Amazon. However, this relationship is not linearly correlated because it depends on the overall 
proportion of the land covered by forest. For regions that are partially degraded, forest cover becomes a less rep-
resentative component in the landscape, causing the abovementioned non-linear relationship. In such a scenario, 
accumulated deforestation can lead to a decline in malaria incidence.
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malaria transmission and economic development. 
Most of the plausible parameter space led to numerical 
simulations with malaria population dynamics show-
ing an initial increase in malaria incidence followed by 
a decrease in this incidence afterwards [33]. The initial 
state of high malaria risk in early stages of land-use 
change is driven by environmental conditions. Malaria 
risk decreases over time because these environmental 
conditions interact with the socioeconomic factors that 
tend to reduce risk on slower and longer timescales 
[33]. The tension between environmental and socioeco-
nomic forces supports the pattern of the rise and fall 
of malaria population dynamics under land transforma-
tion (Fig. 1).

Fragmented landscapes with approximately 30–70% 
forest cover have the forest fringe effect, which maxi-
mizes the abundance of the main malarial vector 
(Anopheles darlingi) in the Amazon [24]. Malaria trans-
mission can be sustained in any given landscape with 
the forest fringe effect [34]. Landscapes near natural 
conservation units (e.g., federal forests and indigenous 
reserves) are generally represented by settlements 
with intermediate forest cover and present a high risk 
of malaria incidence [35]. The variation in malaria 

incidence associated with changes in forest cover (100–
0%) can be depicted by a convex curve [36].

Herein, a test of the unimodal (i.e., convex curve) rela-
tionship between malaria incidence and forest cover on 
a large scale (Amazonian states) is proposed. The impor-
tance of this work is the necessity of depicting the big 
picture and overall knowledge of malaria transmission 
for tailoring interventions. Determinants of the dis-
ease in two Amazonian states (Rondônia and Acre) that 
share a common historical root and started colonization 
at the same time in the 1900s were addressed. The dis-
similarity between the two is that Rondônia represents a 
deforested Amazonian state, while Acre represents a for-
est-conserved Amazonian state. In addition, the state of 
Rondônia was the epicentre of the malaria burden in the 
1980s to 1990s, but this state has recently seen a strong 
decrease in its incidence rate [23, 28]. In contrast, in 
the state of Acre, transmission is stable with some areas 
defined as hotspots of malaria in Brazil [25, 29]. The 
hypothesis is that this difference in the transmission level 
is related to the following: (1) most of the area of Ron-
dônia previously covered by forest has been deforested 
[30]; and (2) the state of Acre, which has larger areas of 
preserved forest, is under anthropogenic changes in the 
natural environment, and forest fragmentation is increas-
ing in some regions [30]. The specific aims are as follows: 
(1) to analyse the spatio-temporal distribution of the inci-
dence rates and compare them between the states of Acre 
and Rondônia (in the western Brazilian Amazon); and (2) 
to address potential determinants of the disease.

Methods
Study area
Acre and Rondônia states (Fig.  2) have a common his-
torical root. The creation of both states is rooted, in part, 
in the Treaty of Petropolis signed in 1903 between Bra-
zil and Bolivia. This agreement resulted in the end of a 
deadlock with respect to a Bolivian territory, which is 
now the geographical seat of Acre in Brazil, and allowed 
for the construction of the Madeira Mamoré Railroad, 
which gave rise to the city of Porto Velho, the capital of 
Rondônia.

These states have different assumptions for the coloni-
zation process. The pride of the people of Acre is latent 
in its history, which is the sum of the struggles of rubber 
workers, indigenous people, pioneers and descendants 
of individuals with these origins. Porto Velho, however, 
does not seem to neither feed from the cradle of its Ama-
zonian history nor seek the past glory of the pioneers 
who had been there before.

The state of Rondônia (Fig.  2; 237.765  km2) shows a 
diversified phytogeography that reflects the heterogene-
ity of physical aspects such as relief, lithology, soil and 
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Fig. 1  Theoretical background. The convex curve supports the 
convex trajectory observed in the generalization model [33] of the 
frontier malaria concept [28]. Environmental conditions (1–3) and 
socioeconomic factors (4–6) are processes estimated with parameters 
in the model by Baeza et al. [33]. Environmental conditions (1–3) 
are driving forces in the high-risk scenario of malaria transmission 
in the first years of colonization. Socioeconomic factors (4–6) 
counterbalance and surpass environmental conditions effects, 
decreasing malaria incidence in the long-term. (1) Carrying capacity: 
the maximum abundance of adult mosquitoes per unit of land area. 
(2) Ecological differences: the magnitude of land-use changes. (3) 
Human Blood Index: the proportion of blood meals from humans 
by a mosquito. (4) Investment in malaria: the effect of investment in 
malaria medication. (5) Gain economic protection: the rate which 
people gain protection against malaria due to the overall economic 
improvements. (6) Treatment effectiveness: the cost-effectiveness of 
the treatment
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climate. With the growing population, the tropical rain 
forest has been gradually decreasing since the late 1970s. 
Currently, natural forest is restricted to reserves, indig-
enous lands and parks. The mapping of the state of Acre 
(Fig. 2; 164.123 km2) shows the occurrence of highly pre-
served vegetation types with ombrophylous forest and 
campinarana (Amazonian plain forest). The climate in 
both states is humid tropical, with two major seasons: the 
rainy season from November to April and the dry season 
from May to October. Malaria incidence is higher in the 
rainy season because of the increase in available larval 
habitats for the mosquito vector.

The state of Rondônia has a mostly rural population 
(70%) out of a total of 1.7 million people estimated in 
2018, who own approximately 905,000 vehicles (e.g., cars, 
trucks, buses and motorcycles). The average monthly 
income is US$251 per capita, and the human develop-
ment index (HDI) is 0.69. In contrast, in Acre, the esti-
mated population in 2018 was 800,000, with 70% living in 
rural areas. The number of vehicles in the whole state was 
251,000, the income was lower (US$202 per capita), and 
the HDI was 0.66 (http://www.ibge.gov.br).

Study design and rationale
This is an ecological study in epidemiology that employs 
aggregate malaria, environmental and socioeconomic 

data from January 2009 to December 2015 of all munic-
ipalities in the states of Acre and Rondônia, Ama-
zon Region, Brazil. Malaria time-series data were first 
analysed, and monthly incidence rates were compared 
between Rondônia and Acre with EPIPOI v. 15 (Alonso 
and McCormick, Oxford, UK) [37]. The stationarity of 
the time-series malaria data was verified using an aug-
mented Dickey-Fuller test with the package tseries in 
the R programming environment v. 3.5.1 (The R Foun-
dation, Vienna, Austria) [38].

A second round of analysis was performed to corre-
late annual malaria incidence rates with annual accu-
mulated deforestation from 2009 to 2015 for each state. 
To reduce the spatial dimension of 22 municipalities in 
Acre and 52 municipalities in Rondônia, the first axes 
of principal component analyses were utilized. These 
axes represent variations of malaria incidence and 
accumulated deforestation in each state. A Pearson’s 
product-moment correlation in R v.3.5.1 was applied to 
test the relationship between these variables.

A standard protocol of spatial analysis with geograph-
ically weighted regression (GWR) was employed for 
assessing the local correlation between annual malaria 
incidence rates and annual accumulated deforestation 
in each municipality of both states, using overall data 
from 2009 to 2015. A time-series modelling analysis 
was employed to verify the association between varia-
tions in monthly malaria incidence rates and climate, 
landscape, and social factors. This analysis was applied 
to those localities with the highest incidence rates in 
Acre.

Malaria incidence rate
The malaria incidence rate was estimated as the num-
ber of malaria cases per 1000 population at risk. Data 
from each municipality in the states of Acre and Ron-
dônia were downloaded from the SIVEP-Malaria data-
base, available at http://porta​lms.saude​.gov.br/saude​
-de-a-z/malar​ia/notif​icaca​o. The raw data were concat-
enated in a database for the analyses.

The estimated population of each municipality was 
available in the SIVEP-Malaria database. Because 
monthly based data were also needed, linear interpo-
lation between subsequent years was performed using 
the following equation:

where y0 and y1 were the available population data in x0 
and x1 months, respectively. The coordinate (x, y) was 
estimated, and the population data (y) were linearly inter-
polated in each month (x).

y− y0

x − x0
=

y1 − y0

x1 − x0

Legend

Biomes
others
Amazon

Brazil

Bolivia

Peru

AC

RO

Fig. 2  Study region. The Brazilian states of Acre (AC) and Rondônia 
(RO) are located in the Southwestern Amazon, bordering 
neighbouring Peru and Bolivia. Forest cover and fragmentation of 
these states are represented as dark/light green (forest), dark brown 
(deforested area) or light brown (rocky soil)

http://www.ibge.gov.br
http://portalms.saude.gov.br/saude-de-a-z/malaria/notificacao
http://portalms.saude.gov.br/saude-de-a-z/malaria/notificacao
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Annual accumulated deforestation
To calculate the overall accumulated deforestation in km2 
that occurred in a certain year per municipality in both 
Amazonian states, we employed publicly available infor-
mation from the Instituto Nacional de Pesquisas Espaci-
ais (INPE) (INPE/PRODES Project website, http://www.
dpi.inpe.br/prode​sdigi​tal).

Spatial regression analysis
As a first step, an ordinary least square model (a non-spa-
tial model) was fitted in R v.3.5.1:

where Y = annual malaria incidence rate (cases/
pop*1000) and X = annual accumulated deforestation 
(%). Parameters β0 = Y value when X equals zero, β1 = lin-
ear effect of annual accumulated deforestation on annual 
malaria incidence rate, and ε = model residuals. The sta-
tistical significance level was 5%.

To check whether the linear relationship between Y 
and X was not biased by the spatial dimension, residuals 
of the aforementioned linear model were tested for spa-
tial autocorrelation with the Moran index calculation in 
GeoDa v. 1.12 (The University of Chicago, Chicago, Illi-
nois, US)

where I = Moran index (equivalent to the product n
W  ∑

i

∑
j wijzizj

∑
i z

2
i

 ), n = number of municipalities, W = first-
order Queen-type spatial weight matrix, wij = element in 
spatial weights matrix, and zi and zj = deviations from the 
mean z. The statistical significance level was 5%.

When the non-spatial model was not adequate, the 
GWR was applied to model spatially heterogeneous rela-
tionships between Y and X in GWR v. 4.09 (Arizona State 
University, Tempe, Arizona, US).

where Y(s) = annual malaria incidence rate in each 
municipality and β(s)X = linear effect of annual accumu-
lated deforestation on annual malaria incidence rate in 
each municipality.

Time‑series modelling
To verify the presence of stable foci of transmission in the 
state of Acre, a dynamic regression modelling analysis 
was performed. Socioeconomic, climate and landscape 
data were employed to verify the potential association 
of each factor to the incidence rate of malaria in the 

Y = β0 + β1X + ε

I =
n

W

∑
i

∑
j wijzizj

∑
i z

2
i

Y (s) = β(s)X

westernmost areas of Acre. The time-series of monthly 
malaria incidence data were modelled with the available 
socioeconomic-environmental data of the Cruzeiro do 
Sul (CZS), Mancio Lima (ML), Rodrigues Alves (RA), 
Porto Walter (PW) and Tarauaca (TA) municipalities 
from 2009 to 2015. These municipalities represent the 
current frontier malaria in the western Amazon.

Specifically, an autoregressive integrated moving aver-
age (ARIMA) model was utilized using the following 
equation:

With the monthly malaria incidence rates as the 
response variables (yt), the socioeconomic-environmen-
tal factors (variables x1, x2,…, xk) were divided into three 
sets: (1) climate (2 variables); (2) landscape (2 variables); 
and (3) socioeconomic (5 variables). The implementa-
tion of ARIMA in the package forecast in R v. 3.5.1 [39] 
was utilized. Accordingly, the equation of the regression 
model was estimated using a stepwise approach with 
forward selection. The 95% confidence interval of each 
intercept (β1, …, βk) was estimated. The autoregressive 
parameter (r), the pure error (e) and the moving average 
(a) were also estimated. No assumptions on the lags for 
the socioeconomic-environmental factors were made. 
The covariate lags were selected based on the model’s 
best prediction. The ARIMA algorithm in the R forecast 
package automatically took seasonal differences (i.e., 
interannual variation) into account when they were rel-
evant in improving model prediction. The time-series 
analysis protocol is available in Additional file 1.

Total precipitation (mm) and average maximum tem-
perature (°C) were selected because of their well-known 
importance for standing water as habitats of the mos-
quito vector. Precipitation and temperature data are avail-
able in the Instituto Nacional de Meteorologia (INMET; 
http://www.inmet​.gov.br). Total precipitation and aver-
age maximum temperature in the rainy (Nov.–Apr.) and 
dry (May–Oct.) seasons were interpolated using data 
from the following meteorological stations: Uruguaiana 
(− 29.75, − 57.08), Corumba (− 57.67, − 19.02), Ponta 
Pora (− 55.71, − 22.55), Eirunepe (− 69.86, − 6.66), 
Labrea (− 64.83, − 7.25), Benjamin Constant (− 70.03, 
− 4.38), Cruzeiro do Sul (− 72.66, − 7.6), and Rio Branco 
(− 70.76, − 8.16) and Tarauaca (− 67.8, − 9.96). More 
information on how temperature and precipitation were 
interpolated is provided in Additional file 2.

Two landscape parameters were chosen because they 
represented a proxy for the presence of mosquito vec-
tor larval habitats: (1) annual forest cover (km2) and (2) 
annual accumulated deforestation (km2) per municipal 
area. These land-use land-cover variables were obtained 
from the aforementioned INPE/PRODES Project website.

yt = β0 + β1x1,t + · · · + βkxk ,t + rYt−1 + et + aet−1

http://www.dpi.inpe.br/prodesdigital
http://www.dpi.inpe.br/prodesdigital
http://www.inmet.gov.br
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Annual socioeconomic data were obtained from the 
PNUD/Atlas Project website (https​://popp.undp.org), 
including infant mortality rate (per 1000 live births), pro-
portion of people living in extreme poverty (% of people 
living on less than US$1.90 per day), proportion of people 
living in poverty (% of people earning less than US$3.75 a 
day), a measure of inequality of income (GINI index, 0–1, 
the most inequality = 1) and municipal HDI (MHDI) (0, 
minimum; 1, maximum). These parameters were selected 
because they can represent risk factors for human expo-
sure to mosquito vector bites and malaria.

Ethical issues
Regarding the Brazilian Institutional Review Board for 
protection of human subjects, the present study does not 
require approval for access to data. Any patient infor-
mation was not publicly available in the SIVEP-Malaria 
platform. In addition, malaria data are part of the pub-
lic domain according to the Brazilian Law of Information 
Access (12.527/2011).

Results
Malaria incidence rate
The malaria incidence rate ranged from 0.2 to 3.5 cases 
per 1000 population from 2009 to 2015, showing a 
decreasing linear trend (− 36%, P < 0.001) in Rondônia, 
whereas it ranged from 1.5 to 6 cases per 1000 popula-
tion, without evidence of a linear trend (− 5%, P = 0.27) 
in Acre (Fig.  3). The results of the Dickey-Fuller test 
showed that the time-series of the malaria incidence rate 
in Rondônia had a stationary process (P < 0.01), whereas 
Acre had a non-stationary process (P = 0.11).

Correlation
The correlation between the malaria incidence rate and 
annual accumulated deforestation was strongly nega-
tive (i.e., more deforestation, less malaria) in Rondônia 
(r = − 0.96, P < 0.001), whereas it was not significant in 
Acre (r = 0.13, P = 0.79) (Fig.  4). In 2015, forest cover 
(85%) in Acre was 1.7 times higher than that estimated 
for Rondônia (51%), while the 2015 total deforested area 
(37%) in Rondônia was 2.84 times higher than that (13%) 
in Acre. The temporal processes of forest cover loss or 
gain per municipality in both states are depicted in Addi-
tional file 3. The full results of principal component anal-
ysis are in Additional file 4.

Spatial regression analysis
The non-spatial model comparing municipalities in Acre 
(22) and Rondônia (52) was not adequate because its 
residuals showed a strong spatial dependence (Moran’s 
I = 0.74, highly clustered). GWR showed that the rela-
tionship of malaria incidence (Fig.  5a) and annual 
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Fig. 3  Time series. Malaria incidence rates in Acre and Rondônia
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Fig. 4  Correlation testing. Scatterplot of malaria incidence rate (MIR) vs. annual accumulated deforestation (AAD) in Rondônia and Acre. PCA1 = first 
axis of the principal component analysis that reduced all the municipality-based data into state-based data
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Fig. 5  Spatial analysis. a Average malaria incidence rate 2009–2015 in each municipality (per 1000 inhabitants). b Accumulated deforestation in 
2015 proportional to each municipality area. c Results of t-distribution from the geographically weighted regression model for each municipality. 
Acre municipalities: ML Mancio Lima, RA Rodrigues Alves, CS Cruzeiro do Sul, PW Porto Walter and TA Tarauaca; Rondônia municipalities, PV Porto 
Velho, CJ Candeias do Jamari, CB Cujubim, RC Rio Crespo, MO Machadinho d’Oeste
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accumulated deforestation (Fig.  5b) is complex because 
it could be either positive (i.e., more deforestation, 
more malaria; red cluster in Fig.  5c) or negative (i.e., 
more deforestation, less malaria; blue cluster in Fig. 5c), 
depending on the amount of remaining forest. Defor-
estation in areas with high forest cover, such as in Acre, 
showed a positive relationship with malaria incidence, 
whereas in areas with low forest cover (in Rondônia), 
additional deforestation decreased malaria incidence. 
The GWR model had better performance than the non-
spatial model, with the coefficient of determination (R2) 

of 0.82 vs. 0.09 (non-spatial model) and Akaike informa-
tion criteria (AIC) of 709 vs. 805 (non-spatial model).

Time‑series modelling
Malaria incidence rates decreased in the municipalities 
of Porto Velho, Candeias do Jamari, Itabua do Oeste, 
Cujubim, Machadinho d’Oeste and Rio Crespo in north-
western Rondônia between 2009 and 2015 (Fig.  6a). 
However, in Mancio Lima, Cruzeiro do Sul, Rodrigues 
Alves, Porto Walter and Tarauaca, the monthly incidence 
ranged from 10 to 60 (per 1000 population) (Fig. 6b).

Fig. 6  Heat-grid time-series. a Monthly malaria incidence rate per municipality 2009–2015 in Rondônia and b Acre. MIR = malaria incidence rate 
(cases/1000 people)
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In the simple time-series regression analysis for the 
municipalities highlighted in Figs.  5c and 6 (ML, CZS, 
RA, PW, and TA), all socioeconomic-environmental fac-
tors were important predictors in the monthly variation 
in malaria incidence rates. Additionally, precipitation and 
temperature were seasonally correlated (i.e., more pre-
cipitation, lower temperature and vice versa), and accu-
mulated deforestation and forest cover were positively 
correlated (which may reflect initial stages of coloniza-
tion, as expected by the frontier malaria concept). All 
socioeconomic variables were correlated with each other 
but were only available in the Cruzeiro do Sul munici-
pality. In the following analysis, precipitation and defor-
estation were selected to represent the environmental 
factors, while poverty and MHDI were selected to rep-
resent the socioeconomic factors. Complete results from 
the time-series modelling are in Additional file 5.

Multiple time-series regression analysis showed 
monthly malaria incidence rates as a function of pre-
cipitation, deforestation and MHDI or poverty in Cru-
zeiro do Sul (Table 1). In Cruzeiro do Sul, precipitation 
was positively but not statistically significantly correlated 
with malaria incidence, whereas deforestation and socio-
economic factors were statistically significant in the two 
models (Table 1). An increase of 0.01 in the MHDI meant 
361 fewer malaria cases per 1000, whereas an increase 
of one unit in proportion (%) of people in poverty meant 
346 more malaria cases per 1000. An increase in 10 km2 
in deforestation meant ~ 400 more malaria cases per 
1000.

In Mancio Lima, Rodrigues Alves, Tarauca and Porto 
Walter, deforestation is positively correlated with malaria 
incidence. These positive correlations are statistically 

significant in all cases, except in Tarauaca, where they are 
slightly non-significant (Table 2). An increase in 10 km2 
in deforestation meant 2–54 more malaria cases per 
1000.

Discussion
The results of this study showed that the correlation 
between accumulated deforestation and malaria inci-
dence can be discordant, showing either a positive or a 
negative statistical association. In Rondônia, the accu-
mulated deforestation was three times higher than in 
Acre, and consequently, the trend in malaria incidence 
declined with increased deforestation. In contrast, the 
correlation was positive and statistically significant in 
Acre. Mechanistically, this pattern can be related to the 
frontier malaria concept [28] and the extension of this 
concept model by Baeza et al. [33], but it is also related to 
other works that state the importance of forest cover in 
malaria incidence in Amazon [24, 35, 36].

In the late 1970s, 2% of the state of Rondônia was 
deforested. Deforestation was intensified during the 
1980s–1990s, affecting larger areas because of intensive 
migration. Malaria increased at very high rates during 
that time [16, 17]. However, starting in the late 1990s, 
Rondônia has gone through a turning point in its eco-
nomic growth [40]. Mid-sized cities, which were merely a 
flow trail of natural resources to the urban centres of the 
capital (Porto Velho) or to southern Brazil in the 1980s, 
emerged as a central nerve in the production chain due to 
urban growth in the 2000s [40]. The five most important 
local hubs in Rondônia (Ji-Parana, Ariquemes, Vilhena, 

Table 1  Results from  the  multiple time-series regression 
analysis of  monthly malaria incidence rate, Cruzeiro 
do Sul-Acre, 2009–2015

* Statistically significant result
a  For the sake of simplicity time-series parameters’ estimations were omitted 
herein, but are available in the Additional file 5
1  Proportion of people living in poverty
2  MHDI: municipal human development index

Estimate SE Pr(> |z|)

Model-1a

 Precipitation 0.24 0.16 0.14

 Deforestation 42.24 18.91 0.026*
 Poverty1 346.2 156.37 0.027*

Model-2a

 Precipitation 0.24 1.6 0.14

 Deforestation 42.73 17.82 0.165

 MHDI2 − 36,113 15,154 0.017

Table 2  Results from  the  multiple time-series regression 
analysis of  monthly malaria incidence rate, Mancio Lima, 
Rodrigues Alves, Tarauaca and  Porto Walter, Acre, 2009–
2015

* Statistically significant result
a  For the sake of simplicity time-series parameters’ estimations were omitted 
herein, but are available in the Additional file 5

Estimate SE Pr(> |z|)

Mancio Limaa

 Precipitation 0.88 0.42 0.036*

 Deforestation 5.44 1.32 < 0.001*

Rodrigues Alvesa

 Precipitation 0.009 0.29 0.98

 Deforestation 4.328 0.76 < 0.001*

Tarauacaa

 Precipitation 0.012 0.06 0.83

 Deforestation 0.233 0.12 0.059

Porto Waltera

 Precipitation − 0.001 0.004 0.97

 Deforestation 1.32 0.24 < 0.001*
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Cacoal, and Rolim de Moura) underwent population 
increases of 15–43% from 2000 to 2010 [40]. Capital 
investments that come to these urban centres in exchange 
for the region’s rich reserves of natural resources remain 
in the form of economic growth, rising socioeconomic 
indictors and public investments [40]. In addition, north-
western Rondônia, which includes the capital (Porto 
Velho) and its adjacent municipalities (Fig.  5c), is con-
sidered a logging zone and a traditional wood transpor-
tation route in Brazil [30]. The fall of malaria observed 
in Rondônia can be related to both (1) socioeconomic 
factors that surpassed environmental forces on malaria 
transmission [28, 33] and (2) the loss of available habitats 
for the malarial vector due to deforestation [36].

Economic development in Acre is historically depend-
ent on forest conservation for rubber exploitation and 
other extractivist activities, as well as fish farming [41]. 
Fish farming is not associated with deforestation [42] but 
can increase the risk of malaria [25, 31]. Cruzeiro do Sul 
was a former rubber town on the Jurua River and is now 
a local hub of economic growth and public investment in 
the westernmost area of Acre [40]. Additionally, Cruzeiro 
do Sul is also considered a local hub for the new frontier 
of logging zones [30]. The rise of malaria in the Jurua Val-
ley Region may be related to environmental factors that 
tend to increase malaria risk in the early stages of coloni-
zation and to the lack of or still-incipient socioeconomic 
forces that tend to reduce malaria risk in the long term 
[33].

Parallel with the use of the frontier malaria concept 
[28] to predict malaria emergence in the Amazon is the 
debate regarding the association between deforestation 
in newly colonized sites and malaria emergence [43, 44]. 
The generality of the relationship between deforestation 
and malaria emergence was challenged [35] because the 
authors found higher malaria incidence in human settle-
ments near priority areas for nature conservation. The 
controversy between the deforestation-malaria hypoth-
esis [35] stimulated intensive debates [45, 46]. An alter-
native was proposed: deforestation may benefit or be 
harmful to the malarial vector population, depending on 
the pattern and proportion of forest cover [24].

The proposed unimodal relationship between forest 
cover and malaria emergence indicates that 30% to 70% 
of the remaining forest cover represents a landscape sce-
nario that can encompass the ecological and environ-
mental conditions that can favour peak transmission of 
malaria [24, 36, 47]. This risky scenario can occur either 
in newly colonized or old settlements [34]. For instance, 
the landscapes shown in Fig. 7 started colonization in the 
1970s [34] and currently have high levels of transmission, 
with an estimated malaria incidence of 45–100 cases per 
day and a P. vivax reproduction number of 3.3–16.8 [48].

The satellite imagery composite shows Cruzeiro do 
Sul and Mancio Lima divided by a natural barrier: the 
hydrographic basin of the Moa River (Fig. 7). The con-
figuration of the land use land cover shown in Fig. 7 can 
support an increase in malaria incidence [35] because 
of the availability of larval habitats for the malarial vec-
tor [24]. In addition, Lana et al. [49] identified improve-
ments in socioeconomic factors in the landscape GUA 
(Fig. 7) at the same time as a high risk of malaria trans-
mission due to (1) the abundance of malarial vectors 
and (2) the mobility of people in this urban centre of 
Mancio Lima. The pattern depicted in Fig. 7 seems sup-
ported by the frontier malaria concept [28] and Baeza 
et  al. [33], thus representing the increasing phase of 
malaria population dynamics. Malaria decline may 
occur later in this real scenario (Fig. 7), when socioeco-
nomic development can reduce transmission risk and 
accumulated deforestation can decrease larval habitat 
availability for the mosquito vectors.

The main malarial vector in the Amazon is Nysso-
rhynchus darlingi, formerly known as Anopheles dar-
lingi [30, 48]. Foster et  al. [50] built a globally based 
phylogeny of Anophelinae and concluded that Neo-
tropical subgenera (including Nyssorhynchus) can be 
elevated to the genus level. In frontier malaria, Ny. dar-
lingi is abundant, and its contact rate with humans is 
high [48]. On the one hand, other anopheline species 
known to be malarial vectors are not well adapted as 
Ny. darlingi in the anthropogenic matrix [51]. On the 
other hand, anopheline diversity continues to be under-
estimated in frontier malaria, with several species 
thought to be unknown [52]. Additionally, in specific 
scenarios, other species (e.g., Nyssorhynchus albitarsis 
sensu lato) can emerge as the primary vectors [53, 54].

A proposition for future research is herein made. The 
best study design for testing a temporal phenomenon as 
frontier malaria is a long-term prospective study. In the 
1970s, a long-term prospective study was conceived for 
testing ecological theories (e.g., island biogeography) in 
the Amazon: the Forest Fragments Project (http://pdbff​
.inpa.gov.br/), e.g., [55]. Considering malaria elimina-
tion as a global target [56], the timing might be optimal 
for a bold proposal, such as a long-term prospective 
study on land transformation and its impact on socio-
economic and environmental determinants of malaria 
transmission.

Limitation
Spatial and temporal variations in malaria incidence 
were not assessed by a statistical autoregressive model 
that considers time and space [57].

http://pdbff.inpa.gov.br/
http://pdbff.inpa.gov.br/
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Conclusions
Landscape modification caused by accumulated defor-
estation is an important driver of malaria population 
dynamics in Amazonia. In the initial phase of human set-
tlement development, accumulated deforestation trans-
forms a landscape with high forest cover into a landscape 
with intermediate levels of forest cover, increasing the 
odds of malaria emergence. In a later phase of develop-
ment, when forest cover is reduced to low levels and its 
capacity to sustain malarial vectors’ larval habitats is 
decreased, the on-going accumulated deforestation only 
decreases the risk of malaria transmission.

The westernmost area of the state of Acre currently has 
stable malaria foci because it represents an initial phase 
of development, whereas the north-western area of the 
state of Rondônia, which had been considered the main 
hub for malaria in the 1980s and 1990s, is now seeing its 
malaria burden decline, which thus represents the later 
phase of development.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1293​6-019-2938-0.

Additional file 1. Time-series analysis protocol in the R programming 
environment. 

Additional file 2. Interpolation of total precipitation and average maxi-
mum temperature. 

Additional file 3. Forest cover variations in municipalities of the states of 
Acre and Rondônia. 

Additional file 4. Results from the principal component analysis. 

Additional file 5. Results from the time-series modelling.

Abbreviations
AAD: annual accumulated deforestation; AC: Acre state; AIC: Akaike informa-
tion criteria; ARIMA: autoregressive integrated moving average; CZS: Cruzeiro 
do Sul municipality; GINI: gini index; GWR​: geographically weighted regres-
sion; HDI: human development index; INMET: Instituto Nacional de Meteoro-
logia; INPE: Instituto Nacional de Pesquisas Espaciais; MHDI: municipal human 
development index; MIR: malaria incidence rate; ML: Mancio Lima municipal-
ity; PNUD/UNDP: United Nations Development Programme; PRODES: Projeto 
de Monitoramento do Desmatamento na Amazônia; PW: Porto Walter munici-
pality; RO: Rondônia state; RA: Rodrigues Alves municipality; SIVEP: Sistema de 
Informações de Vigilância Epidemiológica; TA: Tarauaca municipality.

Acknowledgements
To the three reviewers who promoted opportunity for a more comprehensive 
study case.

Authors’ contributions
Original idea and study design: MAOP, JOM, GZL. Organization of datasets: 
MAOP, JOM, GR, MVML, WAJ. Data analysis: WAJ, MVML, GR, GZL. Production of 

Landscape (5-sq-km)
Legend

CZS
ML

0 2.5 km

GUA

Fig. 7  Satellite imagery composite. Landscape (5-km2) in where malaria transmission level [48] and the deforestation timeline [34] were estimated. 
CZS Cruzeiro do Sul, ML Mancio Lima, GUA​ Guarani-landscape studied by Lana et al. [49]. The satellite imagery composite was made by using the 
protocol developed by Ilacqua et al. [34] with QGis v. 2.18.14 (QGis Community, https​://qgis.org) and SCP plugin v. 5.4.2 (Luca Congedo, Italy). 
Legend: blue, ground waters; dark green, forest vegetation; light green, crops, shrubs or secondary vegetation; pink, exposed or urban soil. Source: 
USGS/Landsat 8

https://doi.org/10.1186/s12936-019-2938-0
https://doi.org/10.1186/s12936-019-2938-0
https://qgis.org


Page 12 of 13de Oliveira Padilha et al. Malar J          (2019) 18:306 

figures and tables: GZL, WAJ, GR. First manuscript draft and further revisions: 
GZL, MAMS, and WJA. All authors read and approved the final manuscript.

Funding
MAOP, JOM, and MVML were supported by the Secretaria de Estado de Saúde 
do Acre (SESACRE) Process n. 007/2015. GR was a recipient of a National Coun-
cil for Scientific and Technological Development (CNPq) scholarship (Process 
n. 162253/2017-6). GZL was supported by the São Paulo Research Foundation 
(FAPESP) and Biota-FAPESP Program 2014/09774-1 and 2015/09669-6. MAMS 
was supported by the FAPESP Grant Number 2014/26229-7 and the CNPq 
Grant Number 301877/2016-5. This work was partially funded by the National 
Institutes of Health (NIH) 1 R01 AI110112-01A1 (to Jan Conn and MAMS).
The funders had no role in study design, data collection and analysis, decision 
to publish, or preparation of the manuscript.

Availability of data and materials
The datasets used and analysed are of public domain, as detailed in the Meth-
ods section. They are available in the Additional files 1–5.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Setor de Pós‑graduação, Pesquisa e Inovação, Centro Universitário Saúde 
ABC, Fundação do ABC, Santo André, SP, Brazil. 2 Gerência Estadual de Controle 
de Endemias, Rio Branco, AC, Brazil. 3 Departamento de Epidemiologia, 
Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil. 
4 School of Forest Resources and Conservation, University of Florida, Gaines-
ville, FL, USA. 5 Cartagena, Spain. 

Received: 28 February 2019   Accepted: 27 August 2019

References
	1.	 Prugnolle F, Durand P, Neel C, Ollomo B, Ayala FJ, Arnathau C, et al. African 

great apes are natural hosts of multiple related malaria species, including 
Plasmodium falciparum. Proc Natl Acad Sci USA. 2010;107:1458–63.

	2.	 Webb JLA. The long struggle against malaria in tropical Africa. New York: 
Cambridge Univ. Press; 2014. p. 219.

	3.	 Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW. The global distribution 
and population at risk of malaria: past, present, and future. Lancet Infect 
Dis. 2004;4:327–36.

	4.	 Fuehrer H-P, Habler VE, Fally MA, Harl J, Starzengruber P, Swoboda P, et al. 
Plasmodium ovale in Bangladesh: genetic diversity and the first known 
evidence of the sympatric distribution of Plasmodium ovale curtisi and 
Plasmodium ovale wallikeri in southern Asia. Int J Parasitol. 2012;42:693–9.

	5.	 Bronner U, Divis PC, Farnert A, Singh B. Swedish traveller with Plasmodium 
knowlesi malaria after visiting Malaysian Borneo: a case report. Malar J. 
2009;8:15.

	6.	 Mueller I, Zimmerman PA, Reeder JC. Plasmodium malariae and 
Plasmodium ovale—the ‘bashful’ malaria parasites. Trends Parasitol. 
2007;23:278–83.

	7.	 Marchesini P, Carter R, Mendis K, Sina B. The neglected burden of Plasmo-
dium vivax malaria. Am J Trop Med Hyg. 2001;64:97–106.

	8.	 Brasil P, Zalis MG, de Pina-Costa A, Siqueira AM, Júnior CB, Silva S, et al. 
Outbreak of human malaria caused by Plasmodium simium in the Atlantic 
Forest in Rio de Janeiro: a molecular epidemiological investigation. 
Lancet Glob Health. 2017;5:e1038–46.

	9.	 Laporta GZ, de Prado PIKL, Kraenkel RA, Coutinho RM, Sallum MAM. 
Biodiversity can help prevent malaria outbreaks in tropical forests. PLoS 
Negl Trop Dis. 2013;7:e2139.

	10.	 WHO. World malaria report 2018. Geneva: World Health Organization; 
2018.

	11.	 Bardach A, Ciapponi A, Rey-Ares L, Rojas JI, Mazzoni A, Glujovsky D, et al. 
Epidemiology of malaria in Latin America and the Caribbean from 1990 
to 2009: systematic review and meta-analysis. Value Health Reg Issues. 
2015;8:69–79.

	12.	 Carter KH, Escalada RP, Ade MP, Singh P, Espinal MA, Mujica OJ. Malaria 
in the Americas: trends from 1959 to 2011. Am J Trop Med Hyg. 
2015;92:302–16.

	13.	 Conn JE, Grillet ME, Correa M, Sallum MAM. Malaria Transmission in South 
America—Present Status and Prospects for Elimination. In: Manguin S, 
Dev V, editors. Towards malaria elimination—a leap forward. London: 
InTech; 2018. p. 281–313.

	14.	 Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. 
The effect of malaria control on Plasmodium falciparum in Africa between 
2000 and 2015. Nature. 2015;526:207–11.

	15.	 Nájera JA, González-Silva M, Alonso PL. Some lessons for the future from 
the global malaria eradication programme (1955–1969). PLoS Med. 
2011;8:e1000412.

	16.	 Ferreira MU, Castro MC. Challenges for malaria elimination in Brazil. Malar 
J. 2016;15:284.

	17.	 Oliveira-Ferreira J, Lacerda MVG, Brasil P, Ladislau JLB, Tauil PL, Daniel-
Ribeiro CT. Malaria in Brazil: an overview. Malar J. 2010;9:115.

	18.	 World Health Organization. World Malaria Report 2017. Geneva: WHO; 
2017.

	19.	 Confalonieri UEC, Margonari C, Quintão AF. Environmental change 
and the dynamics of parasitic diseases in the Amazon. Acta Trop. 
2014;129:33–41.

	20.	 Morais SA, Urbinatti PR, Sallum MAM, Kuniy AA, Moresco GG, Fernandes 
A, et al. Brazilian mosquito (Diptera: Culicidae) fauna: I. Anopheles species 
from Porto Velho, Rondônia state, western Amazon, Brazil. Rev Inst Med 
Trop Sao Paulo. 2012;54:331–5.

	21.	 Terrazas WCM, Sampaio V, de Castro DB, Pinto RC, de Albuquerque BC, 
Sadahiro M, et al. Deforestation, drainage network, indigenous status, 
and geographical differences of malaria in the State of Amazonas. Malar J. 
2015;14:379.

	22.	 Vieira G, Gim KNM, Zaqueo GM, Alves T, Katsuragawa TH, Basano S, et al. 
Reduction of incidence and relapse or recrudescence cases of malaria 
in the western region of the Brazilian Amazon. J Infect Dev Ctries. 
2014;8:1181–7.

	23.	 Angelo JR, Katsuragawa TH, Sabroza PC, de Carvalho LAS, da Silva LHP, 
Nobre CA. The role of spatial mobility in malaria transmission in the 
Brazilian Amazon: the case of Porto Velho municipality, Rondônia, Brazil 
(2010–2012). PLoS ONE. 2017;12:e0172330.

	24.	 Barros FSM, Honório NA. Deforestation and malaria on the Amazon fron-
tier: larval clustering of Anopheles darlingi (Diptera: Culicidae) determines 
focal distribution of malaria. Am J Trop Med Hyg. 2015;93:939–53.

	25.	 Reis IC, Honório NA, de Barros FSM, Barcellos C, Kitron U, Camara DCP, 
et al. Epidemic and endemic malaria transmission related to fish farming 
ponds in the Amazon Frontier. PLoS ONE. 2015;10:e0137521.

	26.	 Barros FSM, Honório NA, Arruda ME. Temporal and spatial distribution of 
malaria within an agricultural settlement of the Brazilian Amazon. J Vector 
Ecol. 2011;36:159–69.

	27.	 Barros FSM, Arruda ME, Gurgel HC, Honório NA. Spatial clustering and 
longitudinal variation of Anopheles darlingi (Diptera: Culicidae) larvae in a 
river of the Amazon: the importance of the forest fringe and of obstruc-
tions to flow in frontier malaria. Bull Entomol Res. 2011;101:643–58.

	28.	 Castro MC, Monte-Mór RL, Sawyer DO, Singer BH. Malaria risk on the 
Amazon frontier. Proc Natl Acad Sci USA. 2006;103:2452–7.

	29.	 Olson SH, Gangnon R, Silveira GA, Patz JA. Deforestation and malaria in 
Mâncio Lima County, Brazil. Emerg Infect Dis. 2010;16:1108–15.

	30.	 Chaves LSM, Conn JE, López RVM, Sallum MAM. Abundance of impacted 
forest patches less than 5 km2 is a key driver of the incidence of malaria 
in Amazonian Brazil. Sci Rep. 2018;8:7077.

	31.	 Reis IC, Codeço CT, Degener CM, Keppeler EC, Muniz MM, de Oliveira 
FGS, et al. Contribution of fish farming ponds to the production of 
immature Anopheles spp. in a malaria-endemic Amazonian town. Malar J. 
2015;14:452.

	32.	 Castro MC. Malaria transmission and prospects for malaria eradica-
tion: the role of the environment. Cold Spring Harb Perspect Med. 
2017;7:a025601.

	33.	 Baeza A, Santos-Vega M, Dobson AP, Pascual M. The rise and fall of malaria 
under land-use change in frontier regions. Nat Ecol Evol. 2017;1:0108.



Page 13 of 13de Oliveira Padilha et al. Malar J          (2019) 18:306 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	34.	 Ilacqua RC, Chaves LSM, Bergo ES, Conn JE, Sallum MAM, Laporta GZ. A 
method for estimating the deforestation timeline in rural settlements in 
a scenario of malaria transmission in frontier expansion in the Amazon 
Region. Mem Inst Oswaldo Cruz. 2018;113:e170522.

	35.	 Valle D, Clark J. Conservation efforts may increase malaria burden in the 
Brazilian Amazon. PLoS ONE. 2013;8:e57519.

	36.	 Laporta GZ. Amazonian rainforest loss and declining malaria burden in 
Brazil. Lancet Planet Health. 2019;3:e4–5.

	37.	 Alonso WJ, McCormick BJJ. EPIPOI: a user-friendly analytical tool for the 
extraction and visualization of temporal parameters from epidemiologi-
cal time series. BMC Public Health. 2012;12:982.

	38.	 Said SE, Dickey DA. Testing for unit roots in autoregressive-moving aver-
age models of unknown order. Biometrika. 1984;71:599.

	39.	 Hyndman RJ, Khandakar Y. Automatic time series forecasting: the forecast 
package for R. J Stat Soft. 2008;27:1–22.

	40.	 Richards P, VanWey L. Where deforestation leads to urbanization: how 
resource extraction is leading to urban growth in the Brazilian Amazon. 
Ann Assoc Am Geogr. 2015;105:806–23.

	41.	 ACRE. Acre em números 2017. Rio Branco: Governo do Estado do Acre; 
2017.

	42.	 Barlow J, Lennox GD, Ferreira J, Berenguer E, Lees AC, Mac Nally R, et al. 
Anthropogenic disturbance in tropical forests can double biodiversity 
loss from deforestation. Nature. 2016;535:144–7.

	43.	 Vittor AY, Pan W, Gilman RH, Tielsch J, Glass G, Shields T, et al. Linking 
deforestation to malaria in the Amazon: characterization of the breeding 
habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med 
Hyg. 2009;81:5–12.

	44.	 Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Lozano WS, et al. The 
effect of deforestation on the human-biting rate of Anopheles darlingi, the 
primary vector of Falciparum malaria in the Peruvian Amazon. Am J Trop 
Med Hyg. 2006;74:3–11.

	45.	 Hahn MB, Olson SH, Vittor AY, Barcellos C, Patz JA, Pan W. Conserva-
tion efforts and malaria in the Brazilian Amazon. Am J Trop Med Hyg. 
2014;90:591–4.

	46.	 Valle D. Response to the critique by Hahn and others entitled “Con-
servation and malaria in the Brazilian Amazon”. Am J Trop Med Hyg. 
2014;90:595–6.

	47.	 Hiwat H, Bretas G. Ecology of Anopheles darlingi Root with respect to vec-
tor importance: a review. Parasit Vectors. 2011;4:177.

	48.	 Sallum MAM, Conn JE, Bergo ES, Laporta GZ, Chaves LSM, Bickersmith SA, 
et al. Vector competence, vectorial capacity of Nyssorhynchus darlingi and 
the basic reproduction number of Plasmodium vivax in agricultural settle-
ments in the Amazonian Region of Brazil. Malar J. 2019;18:117.

	49.	 Lana RM, Riback TIS, Lima TFM, da Silva-Nunes M, Cruz OG, Oliveira FGS, 
et al. Socioeconomic and demographic characterization of an endemic 
malaria region in Brazil by multiple correspondence analysis. Malar J. 
2017;16:397.

	50.	 Foster PG, de Oliveira TMP, Bergo ES, Conn JE, Sant’Ana DC, Nagaki SS, 
et al. Phylogeny of Anophelinae using mitochondrial protein coding 
genes. R Soc Open Sci. 2017;4:170758.

	51.	 Valle D, Ben Toh K, Laporta GZ, Zhao Q. Ordinal regression models for 
zero-inflated and/or over-dispersed count data. Sci Rep. 2019;9:3046.

	52.	 Bourke BP, Conn JE, de Oliveira TMP, Chaves LSM, Bergo ES, Laporta GZ, 
et al. Exploring malaria vector diversity on the Amazon Frontier. Malar J. 
2018;17:342.

	53.	 Laporta GZ, Linton Y-M, Wilkerson RC, Bergo ES, Nagaki SS, Sant’Ana DC, 
et al. Malaria vectors in South America: current and future scenarios. 
Parasit Vectors. 2015;8:426.

	54.	 Conn JE, Wilkerson RC, Segura MNO, de Souza RTL, Schlichting CD, Wirtz 
RA, et al. Emergence of a new neotropical malaria vector facilitated 
by human migration and changes in land use. Am J Trop Med Hyg. 
2002;66:18–22.

	55.	 Lenz BB, Jack KM, Spironello WR. Edge effects in the primate commu-
nity of the biological dynamics of forest fragments project, Amazo-
nas, Brazil: primate edge effects at the BDFFP. Am J Phys Anthropol. 
2014;155:436–46.

	56.	 Hommel M. Towards a research agenda for global malaria elimination. 
Malar J. 2008;7:S1.

	57.	 Lowe R, Bailey TC, Stephenson DB, Graham RJ, Coelho CAS, Carvalho 
MS, et al. Spatio-temporal modelling of climate-sensitive disease risk: 
towards an early warning system for dengue in Brazil. Comput Geosci. 
2011;37:371–81.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Comparison of malaria incidence rates and socioeconomic-environmental factors between the states of Acre and Rondônia: a spatio-temporal modelling study
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Study area
	Study design and rationale
	Malaria incidence rate
	Annual accumulated deforestation
	Spatial regression analysis
	Time-series modelling
	Ethical issues

	Results
	Malaria incidence rate
	Correlation
	Spatial regression analysis
	Time-series modelling

	Discussion
	Limitation
	Conclusions
	Acknowledgements
	References




