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Abstract 

Background:  Increasingly complex models have been developed to characterize the transmission dynamics of 
malaria. The multiplicity of malaria transmission factors calls for a realistic modelling approach that incorporates 
various complex factors such as the effect of control measures, behavioural impacts of the parasites to the vector, or 
socio-economic variables. Indeed, the crucial impact of household size in eliminating malaria has been emphasized 
in previous studies. However, increasing complexity also increases the difficulty of calibrating model parameters. 
Moreover, despite the availability of much field data, a common pitfall in malaria transmission modelling is to obtain 
data that could be directly used for model calibration.

Methods:  In this work, an approach that provides a way to combine in situ field data with the parameters of malaria 
transmission models is presented. This is achieved by agent-based stochastic simulations, initially calibrated with hut-
level experimental data. The simulation results provide synthetic data for regression analysis that enable the calibra-
tion of key parameters of classical models, such as biting rates and vector mortality. In lieu of developing complex 
dynamical models, the approach is demonstrated using most classical malaria models, but with the model param-
eters calibrated to account for such complex factors. The performance of the approach is tested against a wide range 
of field data for Entomological Inoculation Rate (EIR) values.

Results:  The overall transmission characteristics can be estimated by including various features that impact EIR and 
malaria incidence, for instance by reducing the mosquito–human contact rates and increasing the mortality through 
control measures or socio-economic factors.

Conclusion:  Complex phenomena such as the impact of the coverage of the population with long-lasting insec-
ticidal nets (LLINs), changes in behaviour of the infected vector and the impact of socio-economic factors can be 
included in continuous level modelling. Though the present work should be interpreted as a proof of concept, based 
on one set of field data only, certain interesting conclusions can already be drawn. While the present work focuses 
on malaria, the computational approach is generic, and can be applied to other cases where suitable in situ data is 
available.
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Background
Malaria is often regarded as a socio-economic disease 
associated with poverty and underdevelopment. The 
incidence of the disease tends to decline with economic 
development and associated improvement in domestic 
conditions, such as quality of housing and availability 
of medical aid [1, 2]. The elimination of malaria in, for 
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instance, Finland was preconditioned on a drop in house-
hold size [2–4]. However, malaria imported by visitors 
and migrants carries the risk of re-introducing malaria in 
areas that have suitable vectors and climatic conditions 
[5]. For instance, the proportion of imported malaria 
cases due to migrants in Europe has recently increased 
from 14 to 83% [6–9]. It is therefore topical to reconsider 
various factors controlling the spread of malaria.

Classical compartmental models contain a limited 
account of the complex processes of malaria transmission 
dynamics, and more detailed models tend to get over-
loaded with model parameters that are difficult to cali-
brate against real data [10]. Here, an approach to alleviate 
this dilemma is demonstrated by a combination of indi-
vidual or agent-based modelling (ABM) strategy together 
with compartmental modelling. The ABM approach has 
become popular due to its enhanced realism, flexibility, 
explicitness and the advantages of spatial simulations 
with high resolution (see [11]). An agent-based modelling 
approach is employed in order to simulate the impact of 
factors such as intervention measures, household size, 
and the behavioural changes of the vector. The ABM 
results are then linked to basic dynamic transmission 
models in order to enable predictions on the level of pub-
lic health [12–14].

The ABM modelling is done first for a single host in 
the hut, and then on a household level, with multiple 
individuals sleeping under the same roof. Subsequently, 
the household-level model is extended to community-
level scenarios, enabling simulations of heterogeneity of 
mosquito-to-human contact rates due to partial coverage 
with nets or different household sizes. The crucial impact 
of socio-economic factors such as household size has 
been emphasized in [2–4]. The ABM simulations pro-
vide a ‘computational laboratory’ where data reflecting 
the impact of various complex factors can be produced. 
Upon repeated simulations, the ABM outputs can be 
used as synthetic data to produce regression models for 
the factors considered. Here, the focus is on household 

size, LLIN coverage, and alterations in mosquito behav-
iour induced by malaria parasite.

The agent-based model simulations are conducted over 
a ‘snapshot’ time period of one night. The results can be 
extended to continuous time by inserting the values fitted 
by the response surfaces as the key coefficients of classi-
cal compartmental models. Consequently, the impact of 
intervention measures or socioeconomic factors can be 
simulated over longer time periods, and to steady state. 
This allows for the estimation of the EIR [15] values in a 
wide variety of transmission scenarios.

The work-flow followed in the present study is sum-
marized in the schematic illustration given in Fig. 1. The 
modelling process is iterative as there is back and forth 
movement from MCMC parameter identification to 
ABM of mosquito host-seeking behavior, such that the 
model fits the data well.

Other studies have also estimated key parameter sta-
tistics from data on experimental hut trials and subse-
quently employed them in dynamic transmission models 
to enable public predictions. In the work by Churcher 
et al. [12], key parameters of the continuous model [16] 
were estimated using statistical models (such as binomial 
and mixed effect models) and calibrated with hut-level 
experiment data. Sherrard-Smith et  al. [17] systemati-
cally assessed experimental hut data to characterize dif-
ferent indoor residual spray (IRS) product efficacies in 
terms of mosquito mortality, blood-feeding inhibition 
and deterrence against Anopheles mosquitoes, when fit-
ted with statistical models. The impacts of IRS assessed 
from experimental hut trials are extrapolated for public 
health predictions in areas with different levels of cov-
erage and pyrethroid resistance using the mathematical 
model of malaria transmission from [16]. Using a slightly 
different approach, Okumu et  al. [13] directly input-
ted values of relevant parameters from experimental 
hut trials into their transmission model to make public 
predictions. This model additionally considered animal 
hosts (cattle) and predicted community-level impact on 

Fig. 1  Schematic representation of transition from the ABM of mosquito host-seeking behaviour to the continuous modelling. The procedure is 
conducted separately for each of the mosquito species and the chemicals under study
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malaria transmission at high coverage (80%) using direct 
data from hut-level trials for various combinations of 
untreated nets or LLINs with IRS. Another related study 
[18] considered how coverage with ITNs (from 0 to 100%) 
influence the intensity of malaria transmission using an 
elaborated description of the classic feeding cycle model. 
The approach in this study differs from the above papers 
as it presents the model of mosquito host-seeking behav-
iour in a hut in terms of the mosquitoes’ attraction to the 
host, host-seeking orientation, biting and death rate. The 
agent-based simulation of mosquito behavior at hut-level 
in the presence of different insecticides is then calibrated 
with field data from [19]. The ABM approach enables 
modelling of behavioral changes typical for infected mos-
quitoes at the household level and subsequent exten-
sion to community-level simulations using households 
of different sizes. Thus, upon simulating the ABM, the 
key ODE model parameters are created, unlike in [18] 
which is model-based and parameter values are mainly 
assumed. Additionally, the LLIN coverage and household 
size are elaborately considered to range from 0 to 100%, 
and 2 to 10 respectively. This approach enables integra-
tion of socio-economic factors and the study of malaria 
prevalence in a population at varied protection levels, 
while in [12, 13] a certain level of coverage is assumed.

The rest of the paper is organized as follows. In "Meth-
ods" section, the basic agent-based modelling approach at 
the hut level with a single host and its extension are pre-
sented. Next, the ABM extension to household and and 
subsequently to community level are described. Then, 
the next subsection discusses the regression applied to 
the outputs of community-level simulations. The exten-
sion of the response surface results to continuous time is 
given in "Results" section. Finally, the discussion is pre-
sented in the last section.

Methods
Basic ABM host‑seeking model with a single host
A previous work [20] presented an ABM simulation 
approach for mosquito host-seeking behaviour on hut-
level in the presence of LLIN, calibrated for one case of 
the treatment data from [19]. Here, the model is extended 
in several ways to make it capable of reproducing the data 
of other insecticidal treatments, and to enable the exten-
sion to continuous time modelling done in "Results" sec-
tion. The basic modelling approaches utilized in [20] is 
briefly recalled and the modifications made in the present 
work is pinpointed. The model developed in this study 
consists of four basic components, where each of the 
components features a number of associated attributes, 
see the summary in Table 1. Additionally, the properties 
that are assigned individually for each of the mosquito 
agents and updated within the simulation (see Table  2) 

are listed. The model components and the property list 
of mosquitoes are described in detail in this subsection.

Motion and host‑seeking
The mosquito attraction model is based on the assump-
tion that a mosquito estimates the direction of odour 
increase (the gradient) by the mechanism of klinotaxis 
[21]. During this plume-tracking behaviour, the mosquito 
samples the host odour at one location, changes location 
and then repeats the sampling, and uses its memory of 
the concentrations previously encountered to choose the 
next position [22, 23]. Imitating this process, the flight of 
mosquitoes is modelled as a discrete-time correlated ran-
dom walk. Suppose that a mosquito agent is at position 
x
n−1 at time step n− 1 . A new position xn is selected by:

where the increment δW added to xn−1 is sampled in 
random direction, with a step size given by a normal 
distribution N (x0, σ

2I) . In the experimental runs, the 
parameters x0, σ were matched to imitate the real flight 
speed of a mosquito [20]. Mosquitoes are able to iden-
tify the host by making use of the olfactory cues that are 
given off by the host. As a primary stimuli, they move in 
response to the carbon dioxide ( CO2 ) exhaled by verte-
brates. Additionally, at a short distance to the host, mos-
quitoes are able to discern by vision, olfaction and by 
using the heat sensors located around their mouthparts. 
In general, mosquitoes are unable to detect human prey 
from a distance greater than 80 m [22]. The concentra-
tion of attractive odour emitted from an individual host 
is modelled as a Gaussian kernel centered at a spatial 
position of the host xh:

where x denotes the position of the mosquito, and C 
stands for the concentration that enables a mosquito to 
sense the host at a distance d(x, xh) . Note that the impact 
of wind is omitted for simplicity. The standard devia-
tion of the Gaussian σa determines a maximal distance at 
which the mosquito is able to sense the host.

The mosquito flight is given by the above random walk 
in the absence of attraction effects towards the host. 
However, when there are attraction effects, the main fea-
tures of the Metropolis algorithm is employed in order to 
simulate the random walk directionally biased by attrac-
tion [24]. Suppose that a mosquito takes a step from 
point xn−1 to a candidate point xn with respective func-
tion values as pn−1 and pn . Then a new point is accepted 
with probability:

(1)x
n = x

n−1 + δW,

(2)C(x, xh) = exp

[

−d2(x, xh)

2σ 2
a

]

,



Page 4 of 15Amadi et al. Malar J          (2021) 20:185 

where p(xn)/p(xn−1) is the ratio of the attraction poten-
tial function p(x) defined at each point x , which depends 
on the concentration and other attraction factors. In 
order to parsimoniously account for other short-distance 
attraction factors, the attraction potential function is 
defined as:

with a scaling factor σacc that depends on the distance 
to the host. Outside the plume p(x) = 1 , so by Eq. 3 all 
steps are accepted, while closer to the host steps away 
from the host are increasingly rejected due to activation 
of the heat sensors. At a short distance to the host this is 
modelled by a linear scaling factor as:

The above function increases from the minimum value 
of σ 1

acc with a slope given by the parameter σ 2
acc until it is 

replaced by a constant which suitably provides a purely 
random movement outside the concentration plume [20].

Death, poisoning and repellency
The LLINs are assumed to be equipped with repellent 
and poisoning effects. In the absence of chemical treat-
ment, the total probability of death reduces to the natural 
mortality rate. The continuous-time mortality rate µ can 
be transformed into a probability of death per unit time 
�t by:

where �t = 2 s is used for all simulations, and a value 
for µ taken from the literature (see [20] for more details). 
This conforms with the 34-h natural mortality rates 
reported for Anopheles gambiae and Anopheles arabien-
sis as 10%, see [25] .

The poisoning effect is modelled with the assumption 
that at a time instance i, mosquito consumes a dosage of 
chemical Di spread on the treated net upon contact to 
the net surface. Thus, the total accumulated dosage Ctot is 
computed as the number of contacts with the net:

where Di is non-zero in case of hitting the net surface 
(i.e., equal to the unit dosage), and zero otherwise.

(3)αa(x
n|xn−1) = min

(

1,
p(xn)

p(xn−1)

)

,

(4)p(x) = exp (C(x)/σacc)

(5)

σacc(x, x
h) =

{

σ 1
acc + σ 2

accd(x, x
h), d(x, xh) ≤ 80

σmax
acc , d(x, xh) > 80.

(6)α�t = min
{

1,µ�t
}

,

(7)Ctot(n+ 1) =
n+1
∑

i=1

Di = Ctot(n)+ Dn+1,

The insecticidal-induced increase in mortality is then 
modelled as:

where the effective poisoning impact is obtained by a 
scaling coefficient µp which depends on the given insecti-
cide used for LLIN treatment.

So the total probability of death per unit change in time 
�t is modelled as the sum of natural and insecticide-
induced mortality:

Repellency is modelled with the logistic curve multiplied 
with the repulsion intensity parameter r:

where d(x, xh) denotes the distance from the mosquito 
to the protected human and r ranges from 0 to 1. The 
parameters d50 and s determine the range of coverage 
and the spread of the chemical. The logistic function is 
modified such that the rejection probability at the candi-
date position x amplifies as the mosquito approaches the 
source of repellent. Considering the properties of mod-
ern insecticidal treatments [26], the spatial range of the 
repellent s is taken to be small such that the impact is 
only within the vicinity of the net.

The repulsion by LLIN is computed in two stages. First, 
the accept/reject step is applied, where the probabil-
ity of rejection is given by a logistic function describing 
the contact irritancy caused by the chemical, as given 
in Eq.  10. Next, the physical net barrier is taken into 
account, for which the probability of being blocked by the 
net is assigned as pnet < 1 such that there is a non-zero 
chance for penetration.

Model extensions
Motion and host‑seeking: excito‑repellency
The aim is to keep the host-seeking model as minimalis-
tic as possible, by including only the indispensable factors 
listed in Table  1. It turns out, however, that the impact 
of different chemicals could not be fitted by the basic 
formulation given above. For instance, the model has to 
reproduce cases of higher exit and lower contact rates 
along with more than twice higher mortality rate for An. 
gambiae than An. arabiensis, following the data reported 
in [19]. Three new features necessary to characterize the 
impact of different chemicals on mosquitoes: metabolic 
detoxification [27, 28], delayed impact [19] and excito-
repellency (or insecticide-induced exiting) [19, 29], are 
introduced. In order to account for insecticide-induced 

(8)α�t
p (n) = µpCtot(n)�t,

(9)αdeath = min{1,α�t + α�t
p (n)}.

(10)
Crej = r

[

1− 1/
(

1+ exp
(

−
(

d(x, xh)− d50

)

/s
)

)]

,
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exiting, a scaling factor which not only depends on dis-
tance but also on repellent effect is further obtained. The 
inclusion of both distance and repellent effect is essen-
tial in order to properly fit the exit rates, as it accounts 
for generally higher exit rate when confronted with the 
treated nets as compared to the control case with the 
untreated nets. Thus, an excito-repellency parameter 
[29], µe is introduced, which depends on the mosquito 
species and the insecticide utilized in treating a given 
LLIN, parameterized as:

where Ctot denotes the total dosage of chemical con-
sumed by the mosquito (see Eq. 7).

The other two included features: metabolic detoxifi-
cation (see Eq.  12) and delayed mortality are explained 
next.

Poisoning and death: detoxification and delayed death rate
Here, the scenarios in the datasets from [19], where An. 
arabiensis is revealed to have consistently higher (or 
equal) feeding rate than An. gambiae but considerably 
lower death rate, are accounted for. These scenarios are 
inconsistent with the mechanism of the model presented 
in [20]. The inconsistency is explained by the fact that it 
is not possible to have simultaneously high feeding rate 
and low mortality rate if both the probability of death 
and that of successful feeding is proportional only to 
the number of contacts with the net. A number of prob-
able reasons can be offered to account for the conflicting 
situation. One explanation is that the rate of poisoning 
is different for the two species because it takes time for 
the poison to get from the salivary glands to the neural 
system of mosquito and this time delay is suspected to 
be different for the two mosquito species. However, a 
large dosage is equally lethal for both An. gambiae and 
An. arabiensis and mosquitoes do not acquire the lethal 
dosage upon a single contact with the net but rather a 
sub-lethal dosage [19]. So, the explanation of detoxifica-
tion is followed such that the chemical concentration is 
exponentially decaying with a rate α which depends on 
the chemical and mosquito species [28, 30]. Hence, given 
the previous dosage of the chemical Ctot(n) at the step n, 
the dosage at the next step n+ 1 is calculated by modify-
ing Eq. 7 as:

Additionally, the delayed mortality that is a result of the 
prolonged impact of poison in mosquitoes is considered. 
Since poisoning effect is primarily associated with con-
tact with the treated surface, some time is needed for the 
chemicals to penetrate and reach their target, which in 
turn depends on the physiological characteristics of the 

(11)σacc(x,Ctot) = σacc(x)+ µe · Ctot ,

(12)Ctot(n+ 1) = Ctot(n)+ Dn+1 − αCtot(n)�t.

mosquito, such as the sensitivity of target proteins and 
the thickness of the cuticle [27]. Also, due to enzymatic 
detoxification, the knock-down time is prolonged. Owing 
to the high exit rates reported in [19], it was concluded 
that the mortality induced by the insecticides occurred 
only after a delay. Although the mosquitoes respond dif-
ferently with different chemicals, the detailed modelling 
is spared and the enhanced probability of death is simply 
taken into account only after a 24-h time period as given 
by Eq. 6, with �t = 24 · 1800.

The improved model of the chemical-induced exiting 
and mortality introduced can be calibrated for all the dif-
ferent treatment kits data from [19] (see Additional file 1 
for a summary of the datasets). The model is capable of 
reproducing, e.g., the experimentally recorded lower 
contact rates along with more than twice higher mortal-
ity rates for An. gambiae as compared to An. arabiensis 
[19]. The calibration is performed using Bayesian sam-
pling methods (adaptive MCMC) in the same way as in 
[20], more the details are given in Additional file 1. The 
motive of the MCMC simulations is to find the posterior 
distibutions of model parameters, that is ‘all’ parameter 
combinations that reproduce the measured data, within 
the accuracy given by the estimated error bounds of 
the data. While most of the parameters are reasonably 
well identified, some of them are clearly correlated. For 
instance, as the chemically enhanced mortality rates are 
now explained by both detoxification and exito-repel-
lency, the respective parameters are strongly correlated 
with µp , the earlier introduced death rate coefficient.

Household‑scale simulations: household size effect 
and behavioral alterations
Here, the description of the household and community 
level modelling is presented, adding more details to the 
preliminary demonstration given in [20]. First, the ABM 
of mosquito host-seeking behaviour is extended to the 
household level with multiple individuals sleeping under 
the same roof. Next, the modelling is extended to com-
munity-level scenarios with several households located in 
the landscape of interest. See the illustration of the work-
flow in Fig. 1.

A significant correlation between malaria reduction 
and the decline in typical household size in malaria-
endemic countries is discussed in [2–4]. It was concluded 
that the larger the number of people sleeping together 
in non-segregated quarters, the higher the probability of 
transmitting the infection to new uninfected humans [2]. 
In Finland, for instance, the probability of malaria disap-
pearance increased when the average number of indi-
viduals in one household declined below the threshold 
of four people, even when no specific control measures 
were applied [2, 4].
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Naturally, there are several other household-related 
factors that can influence the rate of transmission apart 
from the household size. Such factors include, e.g., 
household practices like livestock/poultry rearing, as 
well as the rate of hygiene maintenance in a given house-
hold [31]. For simplicity, these factors are omitted here. 
The interest of the ABM simulations is in the impact of 
LLINs. The mosquito density m which can be impacted 
by these omitted factors, is taken into account in the ODE 
model. Also, the situation is restricted to a given number 
of persons sleeping together in the same room, while the 
approach can be extended also to cases of many people 
sleeping in separated quarters. The aim here is to dem-
onstrate how household-level factors can be included in 
ABM simulations, and how even most rudimentary con-
siderations impact the modelling outcomes.

On entering a household, the mosquito is assumed to 
choose one of the hosts randomly. After this, the model-
ling reduces to the previous case of a single host in the 
hut. A few changes are needed, however. The tendency 
of mosquitoes to switch to neighbouring individuals 
after spending a certain time in unsuccessful attempts to 
feed on a protected host, should be considered. Thus, an 
additional parameter, thostmax , the maximal time spent while 
attempting to feed on a protected host, is introduced 
[32, 33]. In the absence of more specific knowledge, the 
parameter is set to 10 min. In addition, same as in the 
hut-level experiment, mosquitoes are restricted to a max-
imum host-seeking time, tmax inside the household after 
which they switch to a random walk with no influence 
of the human bait. Another difference is easier exit from 
a usual household compared to that from the special 
design of experimental huts. A typical human dwelling 
[34] is mimicked by setting the probability of exit to con-
stant value that produces about 90% exit rates per night 
in the absence of chemical treatment.

Infection with malaria parasites has been shown to 
alter the behaviour of mosquitoes, with varying effects 
that are based on the life stage of the parasite [35]. The 
underlying mechanisms that engender these behavioural 
alterations are not fully explored but mostly result from 
at least two manipulation processes. Firstly, the parasite 
increases the mosquito’s motivation to continue a meal 
after interruption, thus increasing its probability of tak-
ing several bites. Secondly, the parasite impairs the vec-
tor’s ability to obtain a full blood meal upon a single bite, 
inducing the vector to bite several times before it is fully 
engorged [36, 37]. These behavioural changes associated 
with infection seem likely to be an evolutionary mecha-
nism that has been developed by malaria parasites, which 
enhances the spread of infection [38, 39]. A more pro-
found understanding of the behavioural tendencies of 
parasite-infected mosquitoes alongside the stage-specific 

changes in their host-seeking behaviour could provide a 
potential target for genetic manipulation of mosquitoes, 
as a preventive measure for the elimination of malaria 
infection [40].

In the simulation, the impact of multiple biting typical 
for infected mosquitoes is accounted for. Both infected 
and uninfected mosquitoes are assumed to have the ten-
dency of feeding on multiple hosts [41]. However the 
tendency of multiple feeding is higher for infected mos-
quitoes. Thus, the statistics from [36] is employed, which 
indicate that 10% of uninfected and 22% of infected mos-
quitoes obtain a blood meal on at least two hosts, while 
assuming that the maximal number of successful feeding 
attempts can be up to 5 for both, depending on the acces-
sibility of the hosts. The dosage of blood sufficient for 
ovipositing is assumed to be achieved after the maximal 
number of successful feeding attempts is reached. Note 
that the hut-level data, with one person in the hut, does 
not contain information on the alterations in behaviour 
during the host-seeking, so at this point, the literature is 
relied on. On the other hand, the conjecture that humans 
infected by the parasite attract more mosquitoes [42] is 
not included in the simulations, since the hypothesized 
enhanced attractiveness has demonstrated insignificant 
impact on the outcome of the simulations (see [43]).

Note that in the simulations, the model parameter val-
ues are also re-sampled from the estimated parameter 
posteriors at each successive iteration of the algorithm to 
account for parameter uncertainty (see Additional file 1). 
The main model parameters are summarized in Table 3.

Community‑scale simulations
Next, the modelling is extended to a community-scale 
experiment with the primary aim of quantifying the 
effect of household size and a partial population coverage 
with LLINs (see Fig. 1). Similar to the hut-level case, the 
movement of mosquitoes in the odour plume is governed 
by the mechanism of klinotaxis, but the concentration 
which enables the mosquitoes to sense the hosts is now 
computed as a function of a weighted sum of distances 
from all the individual hosts:

Here Nh denotes the total number of individuals in the 
community, d(x, xhn) stands for the distance from mos-
quito position x to the host location xhn , and Wn is the 
weight attributed to the host n.

(13)

Ctot
a (x) = C(Wn, x, x

h
n) = exp













−











Nh
�

n=1

Wnd(x, x
h
n)

√
2σa


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The total attracting concentration is modelled follow-
ing the idea of the softmax function, which has been 
widely adopted in machine learning and neural networks 
(see [44, 45]). The weight Wn is introduced to account 
for the fact that a mosquito’s response to the cue emit-
ted from the households increases at a short distance of 
5–15 m, depending on the mosquito species, due to their 
attraction to visually conspicuous objects [46–48]. Here, 
the main focus is placed on the nearest target concept, 
which practically means that at a short distance factors 
other than just the CO2 alone also cause the mosquito 
to localize the search, as reported in [46–48]. Following 
this reasoning, the non-normalized weights Ŵn are intro-
duced inversely proportional to the distance:

The value of dh50 is set to be 10 m, to conform with the 
conjecture that at a distance of less than 10 m from the 
households, within which a mosquito is able to dis-
cern shapes, the concentration sensed by the mosquito 
is assumed to be that which is emitted from the closest 
household only. The second parameter sh > 0 governs the 
spatial range of sensitivity that enhances at a short dis-
tance. Here, the value sh = 5 m is used to account for the 
gradual boost of the mosquito’s response to the cues. The 
weights Ŵn(x, x

h
n) are normalized by Wn = Ŵn/

∑Nh
j=1 Ŵj.

Note that the form of Eq. 13 is consistent with the evi-
dence that larger agglomerates emit stronger odours, 
hence, attracting more mosquitoes [23] (see the illustra-
tion in Fig. 2).

Environmental factors such as wind and intermittency 
of the plume are omitted for simplicity. Initially in the 
simulations, mosquitoes are randomly placed inside the 
simulated transmission domain of 25,600 m 2 size with 
multiple households located at a distance not closer 
than 40 m from one another such that there is no com-
petitive attraction induced by vision [46]. A constant 
number of 700 mosquitoes and around 20 individuals 
are used for each experimental run. To average the sto-
chasticity due to spatial arrangement, households are 
randomly positioned at each successive repetition of 
the algorithm. Within a single run, all the households 
are of the same size. However, the household size var-
ies between the runs. Seven repetitions are conducted 
for each of the runs to reduce the noise in the outputs. 
Figure 3 presents the randomly generated experimental 
layout.

The number of infectious mosquitoes is constant for a 
single experiment (since it takes a period of 10 to 12 days 
for parasites to reach a stage whereby they are ready for 
transmission). In the case when an insufficient amount of 
blood was consumed before the exit from the household, 

(14)
Ŵn(x, x

h
n) = (1− 1/ exp(−(d(x, xhn)− dh50)/s

h), x
h
n ∈ x

h
n .

Fig. 2  Softmax function in a special case of two households. 
The first household includes six individuals (located (0,0)) and the 
other household consists of two individuals (located at (0,45)) for 
d50 = 10, s = 5 a 2D plot, b 1D plot along the y axis

Table 1  Model components

Model component Attributes Definition

Host-seeking  CO2 concentration, Klinotaxis Equation 2

 Distance-dependent attraction Equation 5

 Host seeking time

Motion  Random walk, accept/reject 
steps

Equation3

 Excito-repellency Equation 11

Poisoning  Accumulation of the chemical 
dosage

Equation 7

 Detoxification Equation 12

Death  Natural mortality Equation 6

 Insecticide-induced mortality Equation 8

 Delayed mortality Equation 6 with 
model exten-
sion
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the mosquito starts the process of host-seeking (from 
the outset) except that the abandoned household is not 
accounted for when computing the total concentration 
of the CO2. Additionally, it is assumed that after entering 
a new household, the count of host-seeking time tmax is 
reinitialized.

Regression analysis of community‑scale simulations
A final step of using the ABM results is to generate 
regression functions based on the main trends revealed 
by the ABM simulation results. The effects of the in situ 
behaviour, settlement patterns and parasite ecology 
are explored by fitting the response surfaces to the 
trends given by the simulations. That is, ABM is used 
as a ‘computational laboratory’ to produce data for 
response surfaces that capture the impact of the LLIN 
coverage and household size. The ABM simulations are 
inherently stochastic, due to the event generation by 
randomizing. In the community level, the uncertainty 
from sampled parameters at hut-level are included and 
a sensitivity analysis is conducted with respect to the 
assumed parameters using a central composite design. 
The assumed parameters were varied reasonably based 
on literature values as shown in Tables  4 and 5. The 
sensitivity analysis shows that the behavior of the sys-
tem remains more or less the same with reasonable 
perturbations in the assumed parameter values. For 
illustration, the outputs with variability from both sam-
pled parameters at hut level and the assumed param-
eters are presented, for contact and mortality rates of 
An. gambiae when confronted with LLIN treated with 
Aphacypermethrin chemical in Fig.  4. The outputs of 

the ABM simulations are averaged over 7 repetitions of 
the experiment. These number of repetitions was found 
to be sufficient by an extensive preliminary simulation. 
(see Additional file  1 for more ABM community-level 
simulation results).

A regression analysis is applied with respect to the 
household size and the coverage with LLINs, using 
the synthetic data. Given that one of the independent 
variables is discrete by definition, a uniform design is 
employed, considering household sizes of 2, 4, 6, 8 and 
10, and with LLIN coverage varying from 0 to 100%. 
The regression is conducted in two cases: when assum-
ing no behavioural alterations and when considering 
alterations caused by the parasite separately for An. 

Fig. 3  Randomly generated experimental layout with household 
size of three individuals. Here blue rectangles denote the houses, 
green/red circles mark individuals protected/non-protected with the 
impregnated nets

Fig. 4  Uncertainty from the sampled parameters at hut level 
together with the variability of the community-level assumed 
parameters for a mortality rate, b fed rate, of An. gambiae when 
confronted with LLIN impregnated with an Alphacypermethrin 
treatment kit, fitted with respect to partial coverage of LLIN for the 
household size of 2 when assuming no behavioural alterations 
caused by the parasite
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gambiae and An. arabiensis when confronted with each 
of the chemical treatments considered.

The ABM simulation data revealed a nonlinear, quad-
ratic relationship between the mortality rate and LLIN 
coverage, but an insignificant dependence of mortality 
rates on the household size. Consequently, the mortal-
ity rates are fitted with second degree polynomial with 
respect to the coverage only, see Fig.  4 for an example. 
Comparing the impact of the chemicals, it can be seen 
from Fig.  5 that in case of An. gambiae, Carbosulphan 
is the most efficient, while the other treatments display 
similar performances. For An. arabiensis the highest 
impact is with IconMaxx, followed by Carbosulphan. 
Alphacypermethrin treatment induces the lowest mor-
tality for An. arabiensis  of all the studied chemicals. In 
the case of behavioural alterations the mortality rates are 
similar to Fig.  5, although slightly higher, which appar-
ently results from more frequent exposure to insecticide 
due to a higher number of feeding attempts.

The contact rates showed a dependency on both the 
household size and LLIN coverage. Moreover, for both 
uninfected and infected mosquitoes, the respective 
contact rates ã and ā , displayed logistic behaviour with 
respect to the coverage x2 . A certain coverage thresh-
old was required for the contact rate to start decreasing. 
Hence, the logistic functions is used:

(15)
ā(x1, x2) = Nb ∗ (1− 1./(1+ exp(−(x2 − b1 − b2x1)/b3)))

(16)
ã(x1, x2) = Nb ∗ (1− 1./(1+ exp(−(x2 − b1 − b2x1)/b3))),

Fig. 5  Mortality rates regression models. An. gambiae (solid lines) and 
An. arabiensis (dashed lines) fitted with respect to partial coverage of 
LLIN (pLLIN) for four LLIN treatment kits: Alphacypermethrin (blue) 
Carbosulphan (red), Deltamethrin (magenta) and IconMaxx LN (black)

Fig. 6  Contact rates. a An. gambiae and b An. arabiensis fitted 
with respect to household size and partial coverage of LLIN when 
confronted with LLIN impregnated with an Alphacypermethrin 
treatment kit, assuming no behavioural alterations caused by the 
parasite

Table 2  Property list of each agent and the relevant model 
component

Property index Property Model component

1 Spatial position Motion

2 Inside/outside the hut Motion

3 Inside/outside the net Motion

4 Trapped Motion

5 CO2 concentration Motion

6 Fed Host-seeking

7 Time indoors Host-seeking

8 Klinotaxis Host-seeking

9 Dead Death (Poisoning)

10 Accumulated dosage of chemical Poisoning
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where x1 and x2 denote the household size and the frac-
tion of LLIN coverage. The values of the parameters 
Nb, b1, b2, b3 are obtained from the regression fits to the 
ABM data, separately for each chemical. Figure 4 gives an 
example for one of the chemicals.

The results suggest that Alphacypermethrin displayed 
the highest efficiency in reducing the contact rate when 
applied to An. gambiae, while all the other chemicals dem-
onstrate similar reduction effects. This is consistent with 
the confidence intervals given in [19]. On the other hand, 
all the chemicals feature similar performance in reducing 
the contact rate, in the case of An. arabiensis, with slightly 
better efficiency attributed to IconMaxx LN. Moreover, 
unlike the other treatments, Alphacypermethrin displays 
substantially better performance in the reduction of con-
tact rates for An. gambiae compared to An. arabiensis, as 
can be seen from Fig. 6. The other chemicals demonstrate 
similar protection against both mosquito species with 
slightly lower contact rates when applied to An. gambiae.

In both cases, the contact rate tends to increase with 
household size for the fixed rate of LLIN coverage. Thus, 
the regression analysis results provide convincing evidence 
that lower LLIN coverage is sufficient to achieve similar 
reduction in contact rates for smaller household sizes, see 
Figs.  6, 7. For more details of the regression analysis, see 
Additional file 1.

Results
Extension to continuous time, EIR
Here, the ABM of mosquito host-seeking behaviour is 
linked to continuous-time compartmental modelling. This 
connects in  situ mosquito behaviour to commonly meas-
ured quantifiers of malaria transmission, such as Entomo-
logical Inoculation Rate (EIR) and malaria incidence. A 
benchmark test for classical malaria models was conducted 
in [10], where five dynamic models of malaria transmis-
sion were tested on the basis of established performances. 
The most basic Ross malaria model was found to be capa-
ble of reproducing the EIR experimental data satisfactorily. 
Indeed, more complex models tend to suffer from poor 
identification of parameters and may produce results infe-
rior to simple but more robust modelling. Following [10], 
the simple Ross model is considered, but utilized such that 
the complex factors (such as the LLIN coverage, household 
size or alterations of behaviour) are expressed via the ODE 
model parameters. That is, the regression functions from 
the previous section for the contact and mortality rates 
are substituted in place of the respective parameters in the 
Ross model:

(17)
dih = mābim(1− ih)− ihr

dim = ãcih(1− im)− µim,

where ih and im denote the fractions of infected humans 
and mosquitoes, correspondingly, m stands for mos-
quito-to-human ratio, b and c are the probabilities of 
transmission during mosquito contact with the host, 
µ denotes the mosquito mortality rate, and r stands for 
recovery rate for the humans. The difference to the con-
ventional Ross model is also that the contact and death 
rates ā, ã and µ are given by the response surfaces, fitted 
to various in-situ conditions. Indeed, two different con-
tact rates, for infected a and uninfected ã mosquitoes are 
used in the case when alterations in mosquito behaviour 
is assumed. For the rest of the parameters, m, b, c, r, three 
sets of values were borrowed from [10], corresponding to 
low, medium and high transmission settings, see Table 4. 
The integration of the Ross model is done for house-
hold size comprising 2, 4, 6, 8 and 10 individuals while 
applying 20, 40, 60, 80 and 100% LLIN coverage for each 
household size considered.

Fig. 7  Contact rates. a Infected and b uninfected An. arabiensis 
when confronted with LLIN impregnated with an Alphacypermethrin 
treatment kit, fitted with respect to household size and partial 
coverage of LLIN (pLLIN) when assuming behavioural alterations by 
parasite
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The quantities of interest are the equilibrium fractions of 
infected mosquitoes and humans. Note that the units for 
mortality and contact rates are the same in both the ABM 
and Ross model, given as a fraction of mosquito population 
subject to mortality (feeding) per day. The contact rate is 
understood here as the average number of bites taken by 
the mosquito diurnally.

The mosquito-to-human ratio m is taken as a ratio of 
the number of humans to mosquitoes Nm/Nh , as given in 
[10]. Each value of m is combined with the three sets of the 
other parameters in Table  6, so nine pairs of equilibrium 
values of fractions of infectious humans i∗h and infectious 
mosquitoes i∗m were calculated. For each case, the response 
surfaces with respect to household size and LLIN protec-
tion can be now calculated.

The most direct approach for estimating the overall 
malaria transmission in a population is by computing the 
Entomological Inoculation Rate (EIR) [15]. EIR is com-
monly measured to quantify the intensity of an infected 
mosquito pool and its propensity to transmit malaria 
infection to human populace within a given time period. 
Conventionally, the EIR is measured per period of time: 
per night, monthly, seasonally or annually. The transmis-
sion patterns represented by the pair of EIR and Parasite 
Rate (PR) depend on a number of ecological, climatic and 
socioeconomic factors [49]. Here, the simulation results 
are compared to the experimental results reported in [50], 
where a trend curve together with the 95% confidence 
interval was created using data from 31 sites in Africa. At 
the time when the survey was published, the annual EIR 
varied from less than 1 to more than 1000 infective bites 
per person per year. The transmission patterns represented 
by the pair of EIR and Parasite Rate (PR) depend on a num-
ber of complex factors, such as ecology, climate and socio-
economic development [49]. By integration of the modified 
Ross model, the impact of partial population coverage with 
LLIN, alterations in mosquito behaviour and household 
size, on EIR and PR, can be quantified. These two factors 
are computed from equilibrium fractions of infectious 
mosquitoes i∗m and humans i∗h , i.e., by the steady state of the 
Ross model. As EIR is defined as the product mai∗m , a direct 
computation gives:

where

As a result, three pairs of equilibrium EIR and malaria 
incidence i∗h correspond to each of the original selections 
of parameters given in [10], see Fig.  8. In addition, the 

EIR = māi∗m = āãbcm− µr

µb+ ãbc
,

i∗m = āãbcm− µr

µmāb+ āãbcm
.

EIR and PR values for those LLIN and household values 
for which the regression models of ā, ã,µ were calibrated, 
can now be computed. These values, as continuous func-
tions of LLIN, are added in Fig. 8. Figure 9 gives an exam-
ple of the response surface of the EIR values as a function 
of household size and LLIN coverage. Respective figures 
for all the chemicals are given in Additional file 1.

Note that all the results presented in this paper are 
based on data from [19]. Additional experimental data 
would improve the reliability of the results, especially 
for the behaviour of mosquitoes between the house-
holds. Given that similar data are available elsewhere, 
the approach allows general trends and response sur-
faces to be produced based on such data in an analo-
gous way.

Fig. 8  Equilibrium EIR values, assuming behavioural alterations for 
household size 4. a Equilibrium EIR values as continuous functions 
of LLIN coverage. b Equilibrium values of malaria prevalence i∗

h
 

versus EIR, in comparison to the mean trend (black dash-dotted 
line) and 95% confidence bounds (black dashed lines) as given in 
[50]. High (red circles), medium (blue circles) and low (green circles) 
transmission settings from [10], together with simulated values
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Discussion
Transmission of diseases depends on complex factors, 
medical, environmental or socio-economic, to mention a 
few. A serious issue of simulating such processes by tradi-
tional population-level compartmental models is the cali-
bration; the models tend to get very complex, overloaded 
with unidentifiable parameters. The situation is typically 
made worse by the scarcity of real data needed for the 
calibration.

An approach to combine complex in situ factors 
together with classical compartmental models, in the 
case of Malaria transmission, is presented. The idea is to 
simulate the individual level processes by discrete ABM 
calculations under varying conditions for the factors con-
sidered. The resulting data is used as input for regression 
to quantify the impact of the factors as response func-
tions. The key coefficients of a compartmental model can 
then be expressed by these functions.

Naturally, the underlying ABM model needs to be care-
fully calibrated. This is only possible if sufficient in  situ 
data is available, and the ABM model is parsimonious 
enough. Such a model is developed and is calibrated 
using extensive MCMC (Markov chain Monte Carlo) 
simulations against a set of field data. The simulations 
can be extended to community level to study the impact 
of intervention levels and basic socio-economic factors. 
It appears that even if all the ABM model parameters are 
not well identified, the randomized simulations provide 
consistent trends with respect to the factors studied: the 
LLIN coverage, various chemicals, household size and 
behavioural changes of infected mosquitoes.

While the present work should be interpreted as a 
proof of concept, based on one set of field data only, 
certain interesting conclusions can already be drawn. A 
lower LLIN coverage is sufficient for smaller household 

Fig. 9  Predicted equilibrium EIR conditioned on household size and 
the fraction of LLIN coverage, a An. gambiae b An. arabiensis when 
confronted with Carbosulphan

Table 3  Summary of the basic agent-based model parameters, [20]

Parameter symbols Parameter

pnet Probability of being blocked by the physical barrier created by the net

phut Probability of exiting the hut

d50 Range of repellent coverage

µp Insecticide-induced death rate

r Intensity of repulsion

tmax Maximum host-seeking time (when confronted with the LLIN)

µG
e

Rate of increase of excito-repellency for An. gambiae

µA
e

Rate of increase of excito-repellency for An. arabiensis

αG Detoxification rate for An. gambiae

αA Detoxification rate for An. arabiensis

thostmax
Maximal time (in minutes) spent

Attempting to feed on protected host
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sizes in order to attain a certain reduction in the bit-
ing rate. The contact rates are higher when assuming 
behavioural alteration, but with high LLIN coverages 
the contact rates become virtually the same, i.e., the 
effect of alterations in mosquito behaviour due to the 
presence of the Plasmodium parasite becomes negligi-
ble. The difference between mosquito species is evident 
as well. The coverage required to achieve similar reduc-
tion in the number of infectious contacts is higher for 
An. arabiensis than An. gambiae, basically due to the 
lower death rate of An. arabiensis. The death rates of 
both species increase when considering the altera-
tions in behaviour. An intuitive explanation is the more 
intensive exposure to insecticide for infectious mos-
quitoes, due to increased attempts to feed on multiple 
hosts during the night.

Different values of the Ross model parameters can 
result in the same EIR values, which prevents the iden-
tification of transmission factors based on EIR data 
alone. The agent-based model gives an approach which 
incorporates the in situ data with contact and mortality 
rates. So the overall transmission characteristics can be 
estimated by including various features that impact the 
EIR and malaria incidence, e.g., by reducing the mos-
quito–human contact rates and increasing the mortal-
ity through control measures or socio-economic factors. 
Additionally, local characteristics can be combined with 
spatially explicit model that accounts for heterogeneity in 
human and mosquito distribution, see [23].

The present study can naturally be extended in several 
ways. In addition to An. gambiae and An. arabiensis, 
other mosquito species can be be considered, as well 
as intervention methods other then LLINs. Here, con-
stant values are assumed for the mosquito density m, 
although it actually is seasonally varying due to rainfall 
and temperature. Spatial aspects like the local disposi-
tion of mosquito-breeding sites can be included by cali-
brating the respective parameters to be site dependent. 
This way, the modelling can be extended to larger geo-
graphical areas. The mosquito–human contacts with an 
infected mosquito are assumed here to be equally infec-
tious, whereas some people might have acquired partial 
immunity either by constant exposure to the parasite or 
by artificial means via vaccines [51]. Thus, the impact of 
naturally acquired immunity can be incorporated in the 
model by treating the hosts as a population of agents as 
well, and making the transmission parameter b depend-
ent on the individual immunity level. Also, the present 
study is restricted to night-time in-house biting scenar-
ios. The model can be improved to include outdoor bit-
ing scenarios [52]. All such extensions are technically 
feasible but require sufficient field data for a robust 
calibration of an underlying ABM model. Under this 
condition, agent-based models are capable of general-
izing various effects from the in situ level to continuous 
modelling.

Conclusions
The common pitfall of obtaining data that could be 
directly used for model calibration in malaria transmis-
sion modelling, may be overcome by linking in situ field 
data with continuous malaria models. Thus, complex 
phenomena such as the impact of the coverage of the 
population with long-lasting insecticidal nets (LLINs), 
changes in behaviour of the infected vector and the 
impact of socio-economic factors can be included 
in continuous level modelling. The computational 
approach is generic, and can be applied to other cases 
where suitable in situ data is available.
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Table 4  Sensitivity design table

Range d50 sh t
max

host
σa

Minimum 2.7058 1.0718 0.8756 40/3

Maximum 18.2942 14.9282 25.1244 80/3

Table 5  Sensitivity design table for the behavioral alteration

Range Uninfected Infected

Minimum 1.8934 5.8579

Maximum 23.1066 34.1421

Table 6  Summary of parameter selections and mosquito 
densities m from [10] used for integration of the Ross model

Parameters

b, c, r 0.2, 0.5, 0.01 0.03, 0.275, 0.0035 0.4, 0.4, 0.05

Quantity High transmission Medium transmission Low transmission

m 7.6 5.5 4.0
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