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Transient knockdown of Anopheles stephensi 
LRIM1 using RNAi increases Plasmodium 
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Abstract 

Background:  Plasmodium falciparum (Pf ) sporozoites (PfSPZ) can be administered as a highly protective vaccine 
conferring the highest protection seen to date. Sanaria® PfSPZ vaccines are produced using aseptically reared Anoph-
eles stephensi mosquitoes. The bionomics of sporogonic development of P. falciparum in A. stephensi to fully mature 
salivary gland PfSPZ is thought to be modulated by several components of the mosquito innate immune system. In 
order to increase salivary gland PfSPZ infections in A. stephensi and thereby increase vaccine production efficiency, a 
gene knock down approach was used to investigate the activity of the immune deficiency (IMD) signaling pathway 
downstream effector leucine-rich repeat immune molecule 1 (LRIM1), an antagonist to Plasmodium development.

Methods:  Expression of LRIM1 in A. stephensi was reduced following injection of double stranded (ds) RNA into 
mosquitoes. By combining the Gal4/UAS bipartite system with in vivo expression of short hairpin (sh) RNA coding for 
LRIM1 reduced expression of LRIM1 was targeted in the midgut, fat body, and salivary glands. RT-qPCR was used to 
demonstrate fold-changes in gene expression in three transgenic crosses and the effects on P. falciparum infections 
determined in mosquitoes showing the greatest reduction in LRIM1 expression.

Results:  LRIM1 expression could be reduced, but not completely silenced, by expression of LRIM1 dsRNA. Infections 
of P. falciparum oocysts and PfSPZ were consistently and significantly higher in transgenic mosquitoes than wild type 
controls, with increases in PfSPZ ranging from 2.5- to tenfold.

Conclusions:  Plasmodium falciparum infections in A. stephensi can be increased following reduced expression of 
LRIM1. These data provide the springboard for more precise knockout of LRIM1 for the eventual incorporation of 
immune-compromised A. stephensi into manufacturing of Sanaria’s PfSPZ products.
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Background
Malaria is responsible for over 400,000 deaths a year 
[1] and despite continued and sustained control efforts, 
infection rates have plateaued and elimination remains 

elusive, even in places where per capita spending on 
malaria control is high and advanced programmes are 
in place [2]. Indeed, the current COVID-19 pandemic 
is threatening to negate the significant advances that 
have been made over the last 15 years [3, 4]. New tools 
are needed in order to progress further towards control 
and elimination; a vaccine that prevents infection in the 
human host and thereby transmission to mosquitoes 
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would be the ideal tool. With this specific goal in mind, 
Sanaria Inc., along with many collaborators, has dem-
onstrated high level protection with two of its Plasmo-
dium falciparum (Pf ) sporozoite (SPZ)-based vaccines. 
In clinical trials in 6 countries in Africa, the Germany 
and the Netherlands in Europe and at 5 sites in the US, 
PfSPZ-based vaccines have been consistently safe and 
well tolerated. They have protected > 90% of recipients 
against controlled human malaria Infection (CHMI) in 
clinical trials conducted in the USA, Germany, Tanza-
nia, and Mali [5–8] (Sissoko, unpublished) with protec-
tion lasting for at least 8 months against heterologous (P. 
falciparum strain 7G8) CHMI [9] and 14 months against 
homologous (P. falciparum strain NF54) CHMI [10]. Pro-
tective efficacy of approximately 50% lasting for at least 
6 months against naturally transmitted malaria has been 
demonstrated in four independent clinical trials in Mali 
[5] (Sissoko and Halimatou unpublished) and Burkina 
Faso (Sirima, unpublished).

Sanaria Inc. has developed a platform technology for 
producing aseptic, purified, cryopreserved PfSPZ in 
compliance with Good Manufacturing Practices [11, 12]. 
Sanaria® PfSPZ vaccine (radiation-attenuated PfSPZ) [5, 
9–11, 13–15], PfSPZ Challenge which is composed of 
infectious PfSPZ used for CHMI [16–25], PfSPZ-CVac 
(chemo-attenuated PfSPZ), which combines PfSPZ Chal-
lenge with anti-malarial drugs [7, 12, 26, 27], and PfSPZ-
GA1 (genetically attenuated PfSPZ) [28] are all reliant on 
aseptically reared mosquitoes for their manufacture. For 
all of these products, infection intensity of PfSPZ (num-
ber of PfSPZ per mosquito) greatly influences their even-
tual cost of goods.

One factor controlling PfSPZ infection intensity is the 
innate immune system of the mosquito. The immune 
deficiency (IMD) pathway is one arm of the immune sys-
tem that down-regulates Plasmodium infections at the 
oocyst and SPZ stages, and leucine-rich repeat (LRR) 
proteins are the downstream effector molecules in the 
IMD pathway [29]. One LRR, leucine-rich repeat immune 
molecule 1 (LRIM1), a member of the long LRIM sub-
family found only in mosquitoes, is considered a strong 
suppressor of parasite development playing a role in both 
melanization and lysis [30–34] of Plasmodium ookine-
tes and oocysts. The current model suggests that LRIM1 
functions in a complement-like pathway leading to the 
activation of a C3-like protein, TEP1, that localizes to 
the surface of the pathogen, targeting it for destruction 
[29, 35–37]. LRIM1 covalently binds intracellularly to 
APL1C forming a heterodimer that is secreted into the 
hemolymph. The LRIM1/APL1C complex then binds to 
a mature cleaved TEP1 molecule stabilizing it and pro-
moting binding to the pathogen surface. LRIM1 expres-
sion in Anopheles gambiae is regulated by Plasmodium 

infection, with maximum expression coinciding with the 
movement of Plasmodium ookinetes across the midgut 
epithelium [38–40]. Silencing LRIM1 expression with 
dsRNA injected into the mosquito hemocoel increased 
the intensity of Plasmodium berghei oocyst infections 
3–4.5 fold in A. gambiae [39].

The present study tested the hypothesis that knocking 
down A. stephensi LRIM1 would result in higher Plasmo-
dium infection intensities at both oocyst and SPZ stages. 
To achieve this, a transgenic LRIM1 silencer line was pro-
duced by crossing a UAS-LRIM1 line to a line express-
ing the GAL4 transcription activator. LRIM1 expression 
was reduced but not eliminated and higher infections of 
P. falciparum oocysts and PfSPZ were observed, suggest-
ing that transgenic mosquitoes carrying the knock-down 
mechanism could be an important approach to increas-
ing the efficiency of manufacture and reducing cost of 
goods for all PfSPZ products.

Methods
Mosquitoes
SDA 500 is a laboratory strain of Anopheles stephensi 
selected for susceptibility to Plasmodium falciparum 
infection [41, 42]. Mosquitoes were maintained in a 
Conviron environmental chamber at 28 °C, 80% relative 
humidity and a 12 h:12 h light:dark cycle. Larvae were fed 
pulverized fish food (TetraMin Tropical Flakes) daily and 
adults were provided 10% sucrose ad libitum. For colony 
maintenance, seven-day old adult females were offered a 
blood meal of bovine blood in acid citrate dextrose (Lam-
pire Biological Laboratories, Pipersville, PA) at 37  °C 
through a Parafilm membrane using a mosquito feeder 
(Chemglass Life Sciences, Vineland, NJ). Eggs were col-
lected in 50 mL of deionized water in a 250 mL Biostor 
multipurpose container (Fisher Scientific, Rockville, 
MD), lined with Whatman (UK) filter paper.

Artificial feeding buffer composed of 150  mM NaCl; 
10  mM NaHCO3; 1  mM Adenosine -5-triphosphate 
(ATP) [43, 44] was substituted for blood in experiments 
and fed through a Parafilm™ membrane as described 
above.

Infection of Anopheles stephensi with Plasmodium 
falciparum
Three separate cohorts of ~ 400 female A. stephensi 
were fed human blood containing stage V P. falciparum 
gametocytes (strain NF54), as described elsewhere [45] 
and unfed females were removed from the cage. Seven 
days post infection, midguts ~ 30 mosquitoes from each 
cohort were dissected and the oocyst intensity deter-
mined by microscopy. Fourteen days after blood feeding 
the salivary glands of ~ 20 mosquitoes were dissected and 
immediately flash frozen on dry ice for subsequent RNA 
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extraction. The salivary glands of another ~ 30 mosqui-
toes were dissected, and PfSPZ intensity and prevalence 
determined.

Genomic DNA extraction and quantification
Mosquito tissues were homogenized in 50 µL of homoge-
nization buffer (10 mM Tris–HCL pH 7.5, 10 mM EDTA, 
5% sucrose [w/v], 0.15  mM spermine, 0.15  mM sper-
midine) and kept on ice. Fifty microlitres of lysis buffer 
(300 mM Tris–HCL pH 9.0, 100 mM EDTA, 0.625% SDS 
[w/v], 5% sucrose [w/v] were added to the homogenized 
mixture, mixed and incubated at 70  °C for 15  min. The 
mixture was then cooled to room temperature and 15 µL 
of 8 M potassium acetate were added, mixed thoroughly 
then placed on ice for 30 min after which it was centri-
fuged at 14,000 RPM for 10 min at RT. The supernatant 
was transferred to a fresh tube and 90 µL of phenol/
chloroform/isoamylic alcohol were added. The mixture 
was centrifuged at 14,000 RPM, 4  °C and supernatant 
transferred to a new tube and DNA precipitated by add-
ing two volumes of absolute ethanol. The mixture was 
centrifuged at 14,000 RPM for 5 min at RT, supernatant 
discarded, and the pellet washed in 70% ethanol. After 
centrifuging for 10 min at 14,000 RPM, the supernatant 
was discarded and the DNA pellet was vacuum dried 
then suspended in 1 × TE buffer, pH 7.4. The concentra-
tion of nucleic acids was determined using a NanoDrop 
ND-1000 spectrophotometer (NanoDrop, Wilmington, 
USA) at 260  nm, and purity checked by measuring the 
absorption 230 nm and 280 nm.

RNA extraction and quantification
Total RNA was isolated from mosquito tissues using 
Ambion Trizol Reagent according to the manufacturer’s 
instructions. The concentration and purity were deter-
mined as above. At 24 h, 48 h and 72 h post feeding, mid-
guts of 20 mosquitoes were dissected into cold phosphate 
buffered saline (PBS), then midguts and carcasses flash 
frozen immediately in RNase free tubes on dry ice for 
subsequent RNA extraction.

Cloning of Anopheles stephensi SDA 500 leucine rich 
immune molecule 1
LRIM1 was amplified from A. stephensi cDNA by PCR 
using primers AsLRIM1fw (5′-CCC GCC GGT ATA 
GCT TAT CAG-3′) and AsLRIM1rv (5′-CAA ATA GTG 
CTC GTC TGC GC-3′). The known A. gambiae LRIM1 
sequence (AGAP0006348) was aligned using ApE-A 
Plasmid Editor to an assembled draft genome sequence 
of A. stephensi. Conserved regions between A. gambiae 
LRIM1 and A. stephensi LRIM1 [33] were identified and 
primers designed to amplify the full open reading frame. 
Phusion High-Fidelity polymerase (New England Biolabs, 

Ipswich, MA.) was employed for PCR. LRIM1 PCR prod-
uct was purified by gel electrophoresis and gel extraction 
(QIAquick gel extraction kit, QIAGEN, Germantown, 
MD). Purified PCR product was inserted into Zero 
Blunt TOPO PCR Cloning vector (Thermo Fisher Sci-
entific, Rockville, MD) according to the manufacturer’s 
instructions and transformed in Escherichia coli DH10B 
(Thermo Fisher Scientific, Rockville, MD). Positive colo-
nies were digested with EcoRI and agarose gel electro-
phoresis was used to identify insertion of LRIM1 PCR 
product. Sequence identity was then confirmed by DNA 
sequencing (Macrogen Inc, Rockville, MD).

Real time reverse transcription PCR
To generate cDNA, 1–5  μg of total RNA were mixed 
with 1 µL of oligo(dT)20 primer (50 µM), 10 mM dNTP 
mix and RNase free water to a total volume of 10 μL. 
The mixture was heated to 65  °C for 5  min and then 
quickly chilled on ice. A master mix containing 2 μL of 
10X reverse transcriptase (RT) buffer; 4 μL of 25  mM 
MgCl2; 2 μL of 0.1 M DTT; 1 µL of RNase OUT (40 U/
µL); 1 µL of Superscript III RT (200 U/µL), was added, 
gently mixed and incubated at 50  °C for 50  min. The 
reaction was then inactivated by incubating at 85  °C for 
5 min and then chilling on ice. After brief centrifugation, 
1 µL of RNase H was added to the mixture and incubated 
at 37  °C for 20  min. Synthesized cDNA was diluted to 
200 ng/µL and used for qPCR. All the samples to be com-
pared were processed in parallel and in triplicate using 
was an ABI PRISM 7000 Sequence Detection System 
(Applied Biosystems). Reaction conditions are described 
in the Additional file 1.

Synthesis of dsRNA for LRIM1 silencing
A cDNA fragment of 500  bp of LRIM1 was amplified 
using the dsRNAfw and dsRNArv (Additional file  1: 
Table  S3) primers using cDNA from 7-day old A. ste-
phensi females as the template. The resulting PCR 
fragment was cloned into the pCR II-TOPO vector (Inv-
itrogen, Carlsbad, CA) and transformed in E. coli DH10B 
(Thermo Fisher Scientific, Rockville, MD). High yield 
plasmid DNA was isolated using QIAGEN (German-
town, MD) Plasmid Maxi Kit. The T7 flanked DNA frag-
ment used for dsRNA synthesized was removed from the 
plasmid by digestion with EcoRI and double stranded 
RNA was generated and purified using the MEGAscript 
kit (Ambion, Austin, TX).

Silencing Anopheles stephensi LRIM1 by dsRNA injection
Four day old A. stephensi females were anesthetized on 
ice for 5  min and held at 4 ˚C injection plate. Approxi-
mately 100 nL of LRIM1 dsRNA (3  ng/nL) or EGFP 
dsRNA control were injected into the thorax of the 
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mosquitoes using a Pneumatic PicoPump PV820 (World 
Precision Instrument Inc., Sarasota, FL). After injection 
the mosquitoes were allowed to recover at RT for 1  h 
before being transferred to normal rearing conditions 
(see above). LRIM1 silencing was confirmed 4 days post 
dsRNA injection by qRT- PCR.

For bacterial infections a glass needle was dipped into a 
pellet of E. coli (DH10B) OD600 of 0.1 and injected into 
the thorax of the mosquito. For feeding experiments, 
artificial feeding buffer containing E. coli at 100 CFU/mL 
was fed to mosquitoes.

For survival studies, three cohorts of 50 four-day-old 
adult females were injected as above then held at 28 ˚C, 
80% humidity, and 12  h:12  h light:dark cycle with 10% 
sucrose provided ad  libitum. The number of dead mos-
quitoes were recorded each day. A cohort of 50 untreated 
mosquitoes served as a second control.

Vectors
All vectors used in this study are described in Additional 
file 1.

Generation of silencer lines
Anopheles stephensi preblastoderm embryos were 
injected with 150 ng/µL vector-containing plasmids and 
300  ng/µL plasmids expressing piggyBac transposase 
[46], in 5 mM KCl, 0.1 mM NaPO4, pH 6.8. Insects that 
hatched and survived to adulthood were pooled accord-
ing to sex and mated to wild type A. stephensi SDA 500. 
Progeny were screened as larvae for the expression of 
ECFP or nuclear localization sequence (nls)-EGFP, and 
transgenic individuals were used to establish lines. The 
piggyBac insertion sites were determined using splink-
erette-PCR [47, 48] (Additional file  1: Tables S5, S6). 
For experiments that required analysis of genetically 
modified mosquitoes with both the Gal4 transgene and 
UAS::LRIM1silencer transgene, heterozygous individu-
als of the UAS::LRIM1silencer and MBL24 GAL4 line 
were mated to produce progeny with all four genotypes: 
wild type; MBL24-Gal4/+; UAS::LRIM1silencer/+ and 
MBL24-Gal4/UAS::LRIM1silencer. MBL24-Gal4/+, 
UAS::LRIM1silencer/+ and wild type mosquitoes were 
used as controls.

Survival comparison of transgenic mosquitoes
LRIM1-silencer/- lines were crossed with the MBL24 
Gal4/- driver line. From the progeny, 100 female pupae 
of each genotype were identified using the fluorescence 
marker gene. Pupae were pooled, and placed in a 3.8 L 
mosquito cage. After emergence, the mosquitoes were 
maintained on a 10 percent sucrose solution. The num-
ber of dead mosquitoes were recorded each day.

Isolation of midgut microbiota for microbial load 
assessment
Individual A. stephensi SDA500 were surface-sterilized 
by washing three times with alternating 70% ethanol and 
sterile PBS washes. The midguts were then dissected in 
PBS using flame-sterilized forceps and homogenized 
in 200 µL PBS using a sterilized pestle. Each midgut 
homogenate was then serially diluted and inoculated on 
Luria–Bertani (LB) agar and incubated at 27 °C for 48 h 
after which individual colonies counted.

Statistical analysis
All relative expression data and sporozoite numbers 
were compared across multiple treatments by ANOVA 
followed by post-hoc Dunn’s test to identify differences 
between pairs of treatments. Oocyst data were compared 
using a Mann Whitney U test followed by Kruskal–Wal-
lis test between pairs of treatments. Survival curves were 
compared using Mantel–Haenszel chi-squared tests 
to determine the Odds Ratio. Data were analysed using 
Graph Pad Prism software V9.1.

Results
Cloning of Anopheles stephensi leucine rich immune 
molecule 1
A 1.8  kb fragment amplified from A. stephensi cDNA 
showed 58% nucleotide sequence identity and 60% 
amino acid identity to the known A. gambiae LRIM1. 
The sequence contained nine LRR domains consisting of 
19–41 amino acid residues, with two coiled coil domains 
in the region of amino acid residues 318 to 366 and 424 
to 459, and a signal peptide region from residue 1 to 19 
(Fig.  1). The sequence was identified as the predicted 
LRIM1 gene (ASTE000814) when compared to the A. 
stephensi genome (release version VB-2015-10, AsteS1) 
[49].

Fig. 1  Amino acid sequence and predicted structural organization of 
Anopheles stephensi LRIM1. Grey—signal peptide; Red—leucine rich 
repeat regions; Blue—cysteine; Green—Coiled coil domains
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Immune responses of Anopheles stephensi to Plasmodium 
falciparum infection
The midguts and carcasses (i. e. all other tissues) of 
female A. stephensi were assessed at 24, 48 and 72 h post 
blood meal (hpbm) of human blood alone or human 
blood containing P. falciparum gametocytes, for tran-
script levels of IMD effector genes LRIM1, APL1C and 
TEP1 and the IMD pathway negative regulator Caspar; 
mosquitoes maintained on 10% sucrose were used as 
controls against which expression levels were compared. 
LRIM1 was upregulated ~ 1.6 fold at 24 hpbm in the mid-
gut independent of infection (Fig.  2a). In the carcass, 
expression was also upregulated at 24 hpbm, but there 
was a significant (p < 0.025), almost fivefold increase in 
LRIM1 expression associated with infection (Fig.  2d). 
There was no subsequent significant upregulation or 
down regulation after feeding in either tissue or in asso-
ciation with infection (Fig.  2b, c, e, f ). TEP1 expression 
followed the same pattern as LRIM1 while APL1C addi-
tionally showed differential upregulation in the midgut 
associated with infection at 24 hpbm (Fig. 2a). Consistent 
with its role as a negative regulator of the IMD pathway, 

Caspar transcript levels were elevated in the midgut and 
the carcass only at 48 and 72 hpbm (Fig. 2).

The salivary glands of infected females were assessed 
for IMD pathway responses fourteen days post P. falcipa-
rum infection. Both APL1C (p < 0.02) and TEP1 (p < 0.01) 
showed greater than twofold increase in average tran-
script levels when compared to mosquitoes that fed on 
non-infected blood, while LRIM1 showed a 1.8-fold 
(p < 0.02) increase when compared to controls. There was 
also a modest, but significant (p < 0.05), 1.3-fold increase 
in Caspar transcript levels when compared to non-
infected blood fed females (Fig. 3).

Silencing of A. stephensi LRIM1 by injection of dsRNA
dsRNA injections were used as a preliminary assess-
ment for the silencing of LRIM1 in A. stephensi. Female 
mosquitoes were injected with dsAgLRIM1 or dsA-
sLRIM1 and LRIM1 expression compared to mosquitoes 
injected with dsEGFP, and silencing of LRIM1 expres-
sion in the whole body was assessed 4  days post injec-
tion. LRIM1 showed reduced transcript abundance 
of 78.8% and 53.5% after dsAgLRIM1 and dsAsLRIM1 
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Fig. 2  Relative transcript levels of immune genes in adult female Anopheles stephensi. LRIM1, APL1C, TEP1 and Caspar in the midgut (a–c) and 
carcass (d–f) of female Anopheles stephensi 24 h (a, d), 48 h (b, e) and 72 h (c, f) after feeding on blood with (black bars) or without (gray bars) 
Plasmodium falciparum gametocytes. Bars represent mean of triplicate experiments ± standard error of mean. *p < 0.05; **p < 0.02; ***p < 0.01. 
Asterisks above each bar show comparison to baseline; asterisks above horizontal lines show comparison between treatments. Transcript levels are 
reported as a fold expression compared to naïve non-blood fed females
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injections respectively (Fig. 4a) indicating that AsLRIM1 
could be used as the template for transgenic modifica-
tion to down-regulate LRIM1. However, injecting A. ste-
phensi females with dsAsLRIM1 caused 100% mortality 
in females by 10 days post injection compared to 66 per-
cent and 68 percent fatality of dsEGFP and dsAgLRIM1 
injected controls respectively (Fig. 4b).

Characterization of LRIM1‑silencer lines
After confirming the inhibition of AsLRIM1 following 
dsAsLRIM1 injections, the next step was to generate an 
LRIM1 silencer line. Three LRIM1 silencer lines, F2, M2 
and M7 were created. The cytogenetic locations of the 
transgene insertion sites were determined using Splink-
erette PCR [48] and the chromosomal location data of A. 
stephensi scaffolds. The integration site for F2 was in the 
intergenic region of scaffold KB664543 homologous to 
a locus on chromosome 3R in A. gambiae. For M2, the 
transgene was found in the intergenic region of scaffold 
KB664524 homologous to a locus on A. gambiae chro-
mosome 2R, and the M7 transgene was located in the 
intergenic region of scaffold KB664832 homologous to a 
locus on A. gambiae chromosome 3L (Table 1).

The MBL24 Gal4 driver line expresses Gal4 in the mid-
gut, fat body and salivary gland [50]. The progeny of the 
UAS:LRIM1-silencer lines were crossed with the driver 
line and progeny containing a copy of UAS::LRIM1-
silencer and Gal4 were used to test for tissue specific 
silencing of LRIM1 expression using qRT-PCR. The 
abundance of LRIM1 transcript in each genotype was 
compared to transcript abundance in the wild type. Prog-
eny that contained a single transgene element showed 

no statistically significant difference in LRIM1 transcript 
abundance in tissues examined compared to wild type. 
Progeny of the three silencer lines (F2, M2 and M7) that 
contained both the Gal4 and UAS::LRIM1-silencer ele-
ments showed reduction of LRIM1 transcript abundance 
in the midgut and carcass (midgut and salivary glands 

Fig. 3  Relative transcript levels of LRIM1, APL1C, TEP1 and Caspar 
in salivary glands of female Anopheles stephensi 14 days post 
Plasmodium falciparum infection. Transcript levels are reported as 
a fold expression compared to non- infected blood fed females. 
Error bars indicate standard error of the mean of three independent 
replicates. *p < 0.05; **p < 0.02; ***p < 0.01. Asterisks above each bar 
show comparison to baseline

Fig. 4  LRIM1 expression and survival of female Anopheles stephensi 
after dsRNA injection. a Expression of LRIM1 in whole mosquitoes 
4 days after injection. Average transcript abundance is relative 
to control mosquitoes injected with dsEGFP. Transcript levels of 
ribosomal S7 gene were used as a calibrator. Bars indicate standard 
error of the mean of three independent replicates. **p < 0.02; 
***p < 0.01. Asterisks above horizontal lines show comparison 
between treatments and control. b Survival of female Anopheles 
stephensi after injection of dsRNA. Fifty female mosquitoes were used 
for each treatment. Bars indicate standard error of the mean of three 
independent experiments

Table 1  Cytogenetic location of the LRIM1 silencing transgene 
in the Anopheles stephensi genome

Silencer Insertion Site

Scaffold Chromosome

LRIM1-silencer F2 KB664543 3R

LRIM1-silencer M2 KB664524 2R

LRIM1-silencer M7 KB664832 3L
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removed) (Fig. 5a–f), and M2 and M7 additionally in the 
salivary glands compared to wild type (Fig. 5h, i). In the 
midgut, the average transcript abundance was reduced to 
72%, 65% and 52% for lines F2, M2 and M7 respectively 
(Fig. 5a–c). The mean carcass transcript levels in F2, M2 
and M7 were reduced to 64%, 65% and 63%, respectively 
(Fig.  5d–f). For both the M2 and M7 lines, transcript 
reduction was highest in the salivary glands with aver-
age transcript abundance of 56% and 38% respectively 
(Fig. 5h, i). Based on these results, M7 was down-selected 
for infection studies.

Because injection of dsAsLRIM1 into female A. ste-
phensi reduced their lifespan, it was necessary to check 
whether in vivo shRNA silencing with a smaller and more 
specific target site would have a reduced longevity pheno-
type. The life spans of the progeny generated from cross-
ing LRIM1- silencer/- lines with the MBL24 Gal4/- driver 
line were not statistically different in three independent 
experiments (Fig. 6). In all lines and crosses, 60–70% of 
female mosquitoes were alive 21 days post emergence.

In addition, and because M7 demonstrated the greatest 
reduction in midgut expression of LRIM1, the bacterial 
load in the midgut of progeny from the cross of LRIM1 
silencer M7 with MLB24-Gal4 driver was determined. 
No statistical difference was observed in bacterial load 

of the genotypes examined; the mean number of Colony 
Forming Units (CFU) in the female midguts ranged from 
1.8 × 106 CFU/ml to 2.3 × 106 CFU/mL (Fig. 7).

Plasmodium falciparum infections
Heterozygous LRIM1-silencer M7 females were crossed 
with heterozygous MBL24/Gal4 driver males and the 
progeny were fed blood containing P. falciparum stage 
V gametocytes. Each resulting genotype was assessed 
for oocyst and PfSPZ infections. The mean P. falci-
parum oocyst infection intensity of the MBL24/Gal4 
UAS::LRIM1-silencer mosquitoes expressing the hair-
pin silencing construct was 86.0 oocysts/midgut (mean 
of geometric means for three independent experiments) 
compared to 8.0 oocysts/midgut in wild type mosqui-
toes, and 35.7 oocysts/midgut or 35.3 oocysts/midgut 
in transgenic mosquitoes with only the GAL4 element 
or UAS LRIM1 silencer element, respectively (Fig.  8a). 
Mosquitoes expressing the LRIM1 silencer construct 
had 2.5–tenfold higher numbers of PfSPZ in the salivary 
glands compared to wild type. Intermediate PfSPZ inten-
sities were seen in mosquitoes with only the MBL24 Gal4 
transgene or the UAS::LRIM1 transgene (Fig. 8b) (Addi-
tional file 1: Table S1).
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Discussion
The LRIM1 homolog of A. stephensi is a member of the 
LRIM family, containing the conserved double coiled 
coil C-terminal domain [30] that is thought to facilitate 
the protein/protein interactions of LRIM1 and APL1, 
the resulting heterodimer complex being the effector 
molecular of the complement-like immune response [35]. 
Mosquito LRIMs are characterized by a variable num-
ber of leucine-rich repeats (LRRs), which distinguishes 
the short (6–7 LRRs) and long (≥ 10 LRRs) subfamilies 
of LRIMs. AsLRIM1 possesses an N-terminal signal pep-
tide indicating that it is a secreted protein; the AgLRIM1 
monomer is secreted into the hemolymph only after for-
mation of the LRIM1/APL1 complex. In both AsLRIM1 

and AgLRIM1 between the C-terminal coiled coil domain 
and the LRRs is a conserved double cysteine motif impli-
cated in the formation of the disulfide bond between 
LRIM1 and APL1 [30, 36].

LRIM1 in A. gambiae functions as a strong suppressor 
of P. berghei development [32–34], with highest expres-
sion observed 24 hpbm, the time at which ookinetes are 
traversing the mosquito midgut epithelium [39, 40]. Plas-
modium falciparum infection of A. stephensi resulted in 
a similar transient but significant increase in expression 
of LRIM1 and other IMD effector molecules at 24 hpbm 
followed by downregulation at 48 hpbm [39, 40, 51]. The 
relationship between A. stephensi IMD pathway and Cas-
par expression is similar to that seen for Caspar and the 
IMD pathway response to Plasmodium in A. gambiae 
[31]. The IMD pathway is clearly induced in A. stephensi 
in response to parasite infections, specifically to P. falci-
parum ookinetes, and functions to limit parasite infec-
tions in the mosquito. The midgut immune response, 
specifically the IMD pathway, during P. falciparum infec-
tion of A. gambiae was infection intensity dependent [31, 
52]. The experimental design of the present study did not 
allow for that relationship to be explored in A. stephensi.

The novel observation of a statistically significant 
increase in expression of IMD effector genes, including 
LRIM1, in the salivary glands fourteen days post P. fal-
ciparum infection, when PfSPZ are invading the salivary 
glands, could provide significant insight into mosquito 
defense against the parasite late in the sporogonic cycle. 
Mosquito humoral responses against Plasmodium are 
thought to be concentrated in the midgut, fat body and 
haemocoel; but these data suggest that, additionally, 
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the salivary glands plus one or more of those tissues 
in the carcass, can and do mount an immune response 
against P. falciparum. However, it seems most likely that 
any effects of LRIM1 on PfSPZ may be prior to their 
full development in the oocyst or after sporulation and 
oocyst rupture, as parasites are exposed to the hemo-
lymph for several days.

Reverse genetics is an important tool for dissecting 
aspects of mosquito biology and vector parasite interac-
tions [53, 54]. Transient gene silencing by direct injec-
tion of dsRNA and stable expression of hairpin RNAs 
from transgenes integrated into the genome are two 
approaches for exploiting gene knockdown or transient 
silencing using RNAi in mosquitoes [54]. The efficacy of 
gene silencing by direct injection of dsRNA is severely 
limited [55–57], being a blunt instrument with which to 
inhibit tissue- and temporally-specific gene expression. 
LRIM1 expression in A. stephensi injected with AsLRIM1 
or AgLRIM1 dsRNA was reduced by46.5% and 21.2%, 
respectively, demonstrating both the utility and weakness 
of the approach; while expression was indeed inhibited 
and the inhibition increased using the species-specific 
AsLRIM1, the inhibition was incomplete and short-lived. 
To address this, the bi-partite Gal4: UAS system was 
successfully adapted for control of tissue specific in vivo 
expression of hairpin RNAs in A. stephensi. LRIM1 
expression was silenced in the midgut, carcass and sali-
vary glands of A. stephensi throughout the entire sexual 
and sporogonic cycle of Plasmodium. However, silencing 
efficiency was only ~ 40% among the different tissues ana-
lysed in three separate LRIM1 silencing lines. Unlike the 

blunt instrument of injection, the more refined approach 
taken here is still imprecise, and optimizing the expres-
sion of dsRNA to specific localization, time and quantity 
of expression of the target gene would require numer-
ous repeats of these experiments based on number and 
location of the inserted dsRNA. In contrast, the CRIPR/
Cas9 gene editing system offers a more surgical, precise 
method for silencing gene function entirely by disrupting 
sequence fidelity. Silencing LRIM1 in A. stephensi using 
CRISPR/Cas9 results in a very different phenotype which 
will be described elsewhere (Inbar et al., unpublished).

Anopheles stephensi injected with AsLRIM1 dsRNA 
also had reduced life span [33, 39], a phenotype not 
observed in mosquitoes expressing in  vivo dsRNA 
AsLRIM1. One explanation for this difference is the 
potential off-target or non-specific effects of the injected 
dsRNA which represents an overload to the mosquito. 
Short term high-level inhibition of LRIM1 expression 
after injection could also allow a transient increase in 
pathogenic microbiota in the mosquito in response to 
LRIM1 silencing, thereby increasing mortality. While 
the IMD pathway, and specifically TEP1, is considered to 
play an important role in mosquito defense against bac-
teria [30, 58–61]; the present results show that silencing 
LRIM1 by expression of dsRNA did not change the bac-
terial load in the midgut. These contrasting observations 
may explain the differential mortality observed in the two 
experimental approaches.

LRIM1 was identified originally as a strong antagonist 
of P. berghei, but not P. falciparum, oocysts developing 
in the midgut of A. gambiae [39, 62]. LRIM1 does in fact 

Fig. 8  Plasmodium falciparum infections in progeny from a cross of LRIM1-silencer M7 with MLB24 Gal4 driver Anopheles stephensi. Oocyst 
infections were determined on day 7 post blood meal and PfSPZ infections on day 21–25 post blood meal. Circles represent the number of oocysts 
on a single midgut; horizontal black bars represent the median oocysts in each genotype. Three independent biological replicates were pooled, and 
significance was determined by a Kruskal–Wallis test followed by Dunn’s post-test in the case of multiple comparisons. For PfSPZ, circles represent 
the mean intensity in a pool of 30 salivary glands from each of three experiments
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contribute to the anti-P. falciparum response, but at inter-
mediate oocyst intensities with little effect at low inten-
sities [31]. In the present study, A. stephensi expressed a 
transgene whose transcript formed a shRNA targeting 
the silencing of LRIM1; these mosquitoes had increased 
intensities of P. falciparum and P. berghei oocysts as well 
as PfSPZ and PbSPZ compared to wild type. However, 
some uncertainty remains concerning the mechanism of 
increased infections as transgenic mosquitoes contain-
ing only the Gal4 transgene or LRIM1 silencer transgene 
also had increased oocyst and SPZ intensities compared 
to wild type. It is possible that there was a position effect 
of the genomic region integrating the MBL24-GAL4 or 
LRIM1-silencer transgene, though it is unlikely that this 
would have the same phenotype in both lines. Deter-
mination of the insertion sites of the transgenes would 
provide information concerning the presence, absence 
or changes to another gene element at or near the inser-
tion site; unfortunately the lines are no longer available 
for such analyses. Therefore, increases observed in mos-
quitoes with both transgenes in their genome could be 
interpreted as an additive effect of the transgenes and 
not necessarily just LRIM1 silencing. If increase in PfSPZ 
intensity is indeed a response to LRIM1 silencing, then 
the differences observed between the present data and 
published studies [31, 39, 62], is due to the approach used 
for silencing that allowed targeting of LRIM1 in organs 
directly involved in the parasite development cycle in the 
mosquito.

Conclusions
The survival of all lines of mosquitoes were identical for 
21  days post-emergence, suggesting that LRIM1 knock-
down does not affect responses to the main environ-
mental microbial challenges faced by the mosquitoes. 
Indeed, this is supported by the lack of any effect on both 
the midgut bacterial population densities. These data, 
coupled with the more than five-fold average increase in 
PfSPZ intensities compared to wild type SDA500, suggest 
that immunocompromised mosquitoes can be developed 
that could significantly impact Sanaria’s technology plat-
form, increasing manufacturing efficiency and ultimately 
reducing vaccine cost.
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